First, note that $6x^4-12x^3-x+2$ can be factorized as $6(2)^4-12(2)^3-(2)+2=96-96-2+2=0$, factorize it using the long polynomial division by the factor $x-2$, we get $6x^4-12x^3-x+2=(x-2)(6x^3-1)$.
Find all real solutions for the system [MATH]4x^2-40\left\lfloor{x}\right\rfloor+51=0[/MATH] where [MATH]\left\lfloor{x}\right\rfloor[/MATH] represents the floor of $x$.
My solution:
First, notice that if we rewrite the equality as [MATH]4x^2+51=40\left\lfloor{x}\right\rfloor[/MATH], we can tell [MATH]\left\lfloor{x}\right\rfloor[/MATH] must be a positive figure.
Question 1: If you're asked to simplify [MATH]\left(1+\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\right)^2[/MATH], do you think by turning the $1$ as [MATH]\left(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\right)[/MATH] is feasible in order to simplify the expression?