Showing posts with label find all possible values for. Show all posts
Showing posts with label find all possible values for. Show all posts

Monday, April 27, 2015

Find all the possible values for: $1+a+a^2+\cdots+a^{2011}$

Let $x=a$ be a solution of the equation $x^{2012}-7x+6=0$. Find all the possible values for: $1+a+a^2+\cdots+a^{2011}$.

We're told $x=a$ is a solution of the equation $x^{2012}-7x+6=0$, therefore we have $a^{2012}-7a+6=0$.

It can be rewritten as

$a^{2012}-1-7a+6+1=0$

$a^{2012}-1-7a+7=0$

$(a^{2012}-1)-7(a-1)=0$