Showing posts with label y are positive integers. Show all posts
Showing posts with label y are positive integers. Show all posts

Sunday, May 24, 2015

Find x and y if $\dfrac{1}{1!21!}+\dfrac{1}{3!19!}+\dfrac{1}{5!17!}+\cdots+\dfrac{1}{21!1!}=\dfrac{2^x}{y!}$

If $x,\,y$ are positive integers such that $\dfrac{1}{1!21!}+\dfrac{1}{3!19!}+\dfrac{1}{5!17!}+\dfrac{1}{7!15!}+\dfrac{1}{9!13!}+\dfrac{1}{11!11!}+\dfrac{1}{13!9!}+\dfrac{1}{15!7!}+\dfrac{1}{17!5!}+\dfrac{1}{19!3!}+\dfrac{1}{21!1!}=\dfrac{2^x}{y!}$.

Find $x,\,y$.