Processing math: 100%

Sunday, August 13, 2017

Minimize 2017i=1xi.



If x1,x2,...,x2017R+ and 11+x1+11+x2+...+11+x2017=1, find the minimal possible value of 2017i=1xi.


Solution:

By cyclic symmetry, we know the critical value is at the point:

(x1,,x2017)=(2016,,2016)

And the objection function at that point is:

f(2016,,2016)=20162017

Now, looking at another point on the constraint:

(4032,4032,,4032,20162017)

We find the objective function at that point is:

f(4032,4032,,4032,20162017)=22016201620172017>20162017

And so we conclude:

fmin=20162017