\displaystyle f(x)=x^2-rax-sb
which has zeros c,d.
\displaystyle g(x)=x^2-rcx-sd
which has zeros a,b.
Given f(x)\ne g(x), find the sum a+b+c+d in terms of r and s only.
Mark's solution:
Consider the following:
\displaystyle f(x)=x^2-rax-sb
which has zeros c,d.
\displaystyle g(x)=x^2-rcx-sd
which has zeros a,b.
Given f(x)\ne g(x), find the sum a+b+c+d in terms of r and s only.
We know:
\displaystyle c+d=ra
\displaystyle a+b=rc
Hence:
\displaystyle a+b+c+d=r(a+c)
We also know:
\displaystyle c^2-sb=a^2-sd
\displaystyle sd-sb=a^2-c^2
\displaystyle s(d-b)=(a+c)(a-c)
And we obtain by subtraction of the first 2 equations:
\displaystyle (d-b)-(a-c)=r(a-c)
Or:
\displaystyle d-b=(r+1)(a-c)
Hence:
\displaystyle s(r+1)(a-c)=(a+c)(a-c)
Since a\ne c (otherwise d=b and the two quadratics are identical) there results:
\displaystyle a+c=s(r+1)
Hence:
\displaystyle a+b+c+d=rs(r+1)
We know:
\displaystyle c+d=ra
\displaystyle a+b=rc
Hence:
\displaystyle a+b+c+d=r(a+c)
We also know:
\displaystyle c^2-sb=a^2-sd
\displaystyle sd-sb=a^2-c^2
\displaystyle s(d-b)=(a+c)(a-c)
And we obtain by subtraction of the first 2 equations:
\displaystyle (d-b)-(a-c)=r(a-c)
Or:
\displaystyle d-b=(r+1)(a-c)
Hence:
\displaystyle s(r+1)(a-c)=(a+c)(a-c)
Since a\ne c (otherwise d=b and the two quadratics are identical) there results:
\displaystyle a+c=s(r+1)
Hence:
\displaystyle a+b+c+d=rs(r+1)
We know:
\displaystyle c+d=ra
\displaystyle a+b=rc
Hence:
\displaystyle a+b+c+d=r(a+c)
We also know:
\displaystyle c^2-sb=a^2-sd
\displaystyle sd-sb=a^2-c^2
\displaystyle s(d-b)=(a+c)(a-c)
And we obtain by subtraction of the first 2 equations:
\displaystyle (d-b)-(a-c)=r(a-c)
Or:
\displaystyle d-b=(r+1)(a-c)
Hence:
\displaystyle s(r+1)(a-c)=(a+c)(a-c)
Since a\ne c (otherwise d=b and the two quadratics are identical) there results:
\displaystyle a+c=s(r+1)
Hence:
\displaystyle a+b+c+d=rs(r+1)