Showing posts with label IMO difficult problem. Show all posts
Showing posts with label IMO difficult problem. Show all posts

Friday, August 28, 2015

How to improve your thinking skills? (III)

Prove $\dfrac{\pi}{4}+\dfrac{1}{6}\gt \arctan\left({\dfrac{6}{5}}\right)$.

Do you know if we're pretty familiar with how the graph of a particular function behaves on certain interval, we could set up a definite integral to prove some of the inequality problems (be them hard, moderately hard or very difficult)?