Showing posts with label definite integral. Show all posts
Showing posts with label definite integral. Show all posts

Friday, August 28, 2015

How to improve your thinking skills? (III)

Prove $\dfrac{\pi}{4}+\dfrac{1}{6}\gt \arctan\left({\dfrac{6}{5}}\right)$.

Do you know if we're pretty familiar with how the graph of a particular function behaves on certain interval, we could set up a definite integral to prove some of the inequality problems (be them hard, moderately hard or very difficult)?

Thursday, August 6, 2015

IMO Integration Problem: Evaluate $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$.

Evaluate $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$.

Solving for this problem is a breeze if you're someone who is so sensitive about the possibility of the existence of property of symmetry for the integrand function involved.