IMO Optimization Contest Problem:
Find the minimum value of $xy$, given that $x^2+y^2+z^2=7$, $xy+xz+yz=4$, and $x, y$ and $z$ are real numbers.
My solution:
From the well-known identity
$(x+y+z)^2=x^2+y^2+z^2+2(xy+xz+yz)$
and the given values for $x^2+y^2+z^2=7$ and $xy+xz+yz=4$, we get:
$(x+y+z)^2=7+2(4)$