Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Wednesday, May 4, 2016

Solve for real solution(s) for \displaystyle x^2− x + 1 = (x^2+ x + 1)(x^2+ 2x + 4).

Solve for real solution(s) for \displaystyle x^2− x + 1 = (x^2+ x + 1)(x^2+ 2x + 4).

My solution:

Let \displaystyle y=(x+1)^2=x^2+2x+1, this turn the given equality into the following form:

\displaystyle x^2− x + 1 = (x^2+ x + 1)(x^2+ 2x + 4)

\displaystyle \underline{x^2+2x+ 1} -3x= (\underline{x^2+2x+ 1}-x)(\underline{x^2+2x+ 1}+ 3)

\displaystyle y -3x= (y-x)(y+ 3)

Expanding we get:

\displaystyle y -3x= y^2+3y-xy-3x

\displaystyle y = y^2+3y-xy

If y=0, then x=-1 is a solution, and we verified that it indeed is a solution:

\displaystyle (-1)^2− (-1) + 1 = ((-1)^2+ (-1) + 1)((-1)^2+ 2(-1) + 4)\implies 3=3

If y\ne 0, then divide through the equation \displaystyle y = y^2+3y-xy by y we get:

\displaystyle 1 = y+3-x

\displaystyle x-2= y

\displaystyle x-2=x^2+2x+1

\displaystyle x^2+x+3=0

\displaystyle \left(x-\frac{1}{2}\right)^2+3-\frac{1}{4}=0

\displaystyle \left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\implies no real solution from this case.

Therefore, the only real solution for the given equation is x=-1.

No comments:

Post a Comment