Solve for real solution(s) for \displaystyle x^2− x + 1 = (x^2+ x + 1)(x^2+ 2x + 4).
My solution:
Let \displaystyle y=(x+1)^2=x^2+2x+1, this turn the given equality into the following form:
\displaystyle x^2− x + 1 = (x^2+ x + 1)(x^2+ 2x + 4)
\displaystyle \underline{x^2+2x+ 1} -3x= (\underline{x^2+2x+ 1}-x)(\underline{x^2+2x+ 1}+ 3)
\displaystyle y -3x= (y-x)(y+ 3)
Expanding we get:
\displaystyle y -3x= y^2+3y-xy-3x
\displaystyle y = y^2+3y-xy
If y=0, then x=-1 is a solution, and we verified that it indeed is a solution:
\displaystyle (-1)^2− (-1) + 1 = ((-1)^2+ (-1) + 1)((-1)^2+ 2(-1) + 4)\implies 3=3
If y\ne 0, then divide through the equation \displaystyle y = y^2+3y-xy by y we get:
\displaystyle 1 = y+3-x
\displaystyle x-2= y
\displaystyle x-2=x^2+2x+1
\displaystyle x^2+x+3=0
\displaystyle \left(x-\frac{1}{2}\right)^2+3-\frac{1}{4}=0
\displaystyle \left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\implies no real solution from this case.
Therefore, the only real solution for the given equation is x=-1.
No comments:
Post a Comment