Processing math: 100%

Tuesday, July 12, 2016

Show that abc(ab+bc+ca)(a2+b2+c2)2 for all positive real a,b and c such that a+b+c=1.

Show that abc(ab+bc+ca)(a2+b2+c2)2 for all positive real a,b and c such that a+b+c=1.

My solution:

(ab+bc+ca)(a2+b2+c2)2

(ab+bc+ca)(a2+b2+c2)(a+b+c)23 since 3(a2+b2+c2)(a+b+c)2

=(ab+bc+ca)(a2+b2+c2)3 since a+b+c=1

=a3b+b3c+ac3+a3c+ab3+bc3+a2bc+ab2c+abc23

=(a21ab+b21bc+c21ca)+(a21ac+b21ab+c21bc)+a2bc+ab2c+abc23

((a+b+c)21ab+1bc+1ca)+((a+b+c)21ac+1ab+1bc)+a2bc+ab2c+abc23 (By the Titu's Lemma)

=(1a+b+cabc)+(1a+b+cabc)+a2bc+ab2c+abc23

(since a+b+c=1 and 1ab+1bc+1ca=cabc+aabc+bcab=a+b+cabc)

=(abc+abc)+abc(a+b+c)3

=3abc3

=abc (Q.E.D)

2 comments: