Show that abc≤(ab+bc+ca)(a2+b2+c2)2 for all positive real a,b and c such that a+b+c=1.
My solution:
(ab+bc+ca)(a2+b2+c2)2
≥(ab+bc+ca)(a2+b2+c2)(a+b+c)23 since 3(a2+b2+c2)≥(a+b+c)2
=(ab+bc+ca)(a2+b2+c2)3 since a+b+c=1
=a3b+b3c+ac3+a3c+ab3+bc3+a2bc+ab2c+abc23
=(a21ab+b21bc+c21ca)+(a21ac+b21ab+c21bc)+a2bc+ab2c+abc23
≥((a+b+c)21ab+1bc+1ca)+((a+b+c)21ac+1ab+1bc)+a2bc+ab2c+abc23 (By the Titu's Lemma)
=(1a+b+cabc)+(1a+b+cabc)+a2bc+ab2c+abc23
(since a+b+c=1 and 1ab+1bc+1ca=cabc+aabc+bcab=a+b+cabc)
=(abc+abc)+abc(a+b+c)3
=3abc3
=abc (Q.E.D)
Beautiful solution!
ReplyDeleteThanks, Michelle! :D
ReplyDelete