Loading [MathJax]/extensions/TeX/cancel.js

Wednesday, November 11, 2015

Third Solution: Find k if ksin6x=sin2x given cos6xcos2x=16.

Find k if ksin6x=sin2x given cos6xcos2x=16.

Third method:

Third method revolves around the concept of Componendo and Dividendo, that says if ab=cd, then a±bb=c±dd.

Besides, we have to be super familiar with the triple angle formula for both sine and cosine function:

sin3x=3sinx4sin3x and cos3x=4cos3x3cosx

Also, the s

Let's get started:

cos6xcos2x=16

cos6xcos2xcos2x=166

2sin(6x+2x2)sin(6x2x2)cos2x=56

2sin4xsin2xcos2x=56

2(2sin2xcos2x)sin2xcos2x=56

\dfrac{4(\sin 2x \cancel{\cos 2x})}{\cancel{\cos 2x}}\cdot \dfrac{\sin 2x}{\sin 2x}=\dfrac{5}{6}

\dfrac{4\sin^3 2x}{\sin 2x}=\dfrac{5}{6}

\dfrac{-4\sin^3 2x}{\sin 2x}=\dfrac{-5}{6}

\dfrac{-4\sin^3 2x+\sin 2x}{\sin 2x}=\dfrac{-5+6}{6}

\dfrac{-4\sin^3 2x+\sin 2x+\sin 2x}{\sin 2x}=\dfrac{-5+6+6}{6}

\dfrac{-4\sin^3 2x+\sin 2x+\sin 2x+\sin 2x}{\sin 2x}=\dfrac{5+6+6+6}{6}

\dfrac{3\sin 2x-4\sin^3 2x}{\sin 2x}=\dfrac{13}{6}

\dfrac{\sin 6x}{\sin 2x}=\dfrac{13}{6}

and we're done.



No comments:

Post a Comment