Find k if ksin6x=sin2x given cos6xcos2x=16.
Third method:
Third method revolves around the concept of Componendo and Dividendo, that says if ab=cd, then a±bb=c±dd.
Besides, we have to be super familiar with the triple angle formula for both sine and cosine function:
sin3x=3sinx−4sin3x and cos3x=4cos3x−3cosx
Also, the s
Let's get started:
cos6xcos2x=16
cos6x−cos2xcos2x=1−66
−2sin(6x+2x2)sin(6x−2x2)cos2x=−56
2sin4xsin2xcos2x=56
2(2sin2xcos2x)sin2xcos2x=56
\dfrac{4(\sin 2x \cancel{\cos 2x})}{\cancel{\cos 2x}}\cdot \dfrac{\sin 2x}{\sin 2x}=\dfrac{5}{6}
\dfrac{4\sin^3 2x}{\sin 2x}=\dfrac{5}{6}
\dfrac{-4\sin^3 2x}{\sin 2x}=\dfrac{-5}{6}
\dfrac{-4\sin^3 2x+\sin 2x}{\sin 2x}=\dfrac{-5+6}{6}
\dfrac{-4\sin^3 2x+\sin 2x+\sin 2x}{\sin 2x}=\dfrac{-5+6+6}{6}
\dfrac{-4\sin^3 2x+\sin 2x+\sin 2x+\sin 2x}{\sin 2x}=\dfrac{5+6+6+6}{6}
\dfrac{3\sin 2x-4\sin^3 2x}{\sin 2x}=\dfrac{13}{6}
\dfrac{\sin 6x}{\sin 2x}=\dfrac{13}{6}
and we're done.
No comments:
Post a Comment