Prove that $(a^3+b^3+c^3+d^3)^2=9(ab-cd)(bc-ad)(ca-bd)$.
My solution:
First, we draw some very useful and helpful identities from the given equality, $a+b+c+d=0$:
$a+b+c+d=0$
[MATH]\color{yellow}\bbox[5px,purple]{a+b=-(c+d)}[/MATH]
$(a+b)^2=(-(c+d))^2$
$a^2+b^2+2ab=c^2+d^2+2cd$
[MATH]\implies \color{yellow}\bbox[5px,green]{c^2+d^2=2(ab-cd)+a^2+b^2}[/MATH]
[MATH]\implies \color{yellow}\bbox[5px,blue]{a^2+b^2-c^2-d^2+2ab-2cd=0}[/MATH]
[MATH]\implies \color{black}\bbox[5px,orange]{a^2+b^2-c^2-d^2=2cd-2ab}[/MATH]
Also, note that $a^3+b^3=(a+b)(a^2-ab+b^2)$.
We can now try to work on the LHS of the target equation to prove it equivalent to what it has on the RHS of the equation:
$(a^3+b^3+c^3+d^3)^2$
$=((a+b)(a^2-ab+b^2)+(c+d)(c^2-cd+d^2))^2$
$=((a+b)(a^2-ab+b^2)-(a+b)(c^2-cd+d^2))^2$ (since [MATH]\color{yellow}\bbox[5px,purple]{a+b=-(c+d)}[/MATH])
$=((a+b)(a^2-ab+b^2-c^2+cd-d^2))^2$
$=((a+b)(2cd-2ab-ab+cd))^2$ [MATH]\color{black}\bbox[5px,orange]{a^2+b^2-c^2-d^2=2cd-2ab}[/MATH]
$=(a+b)^2(3cd-3ab)^2$
$=3^2(a+b)^2(cd-ab)^2$
$=9(a+b)^2(ab-cd)^2$
$=9(ab-cd)(a+b)^2(ab-cd)$---(*)
The remaining effort now is to show that $(a+b)^2(ab-cd)=(bc-ad)(ac-bd)$. If we can prove that, we're then done.
That shouldn't be too hard a thing to do, and we can prove it two ways, we can either prove it backwards ($(bc-ad)(ac-bd)=(a+b)^2(ab-cd)$) or forwards ($(a+b)^2(ab-cd)=(bc-ad)(ac-bd)$), as long as we know how to algebraically manipulate with what we've established:
$(bc-ad)(ac-bd)$
$=bcac-bcbd-adac+adbd$
$=abc^2-b^2cd-a^2cd+abd^2$
$=ab(c^2+d^2)-cd(a^2+b^2)$
$=ab(2(ab-cd)+a^2+b^2)-cd(a^2+b^2+2a-2ab)$ [MATH] \color{yellow}\bbox[5px,green]{c^2+d^2=2(ab-cd)+a^2+b^2}[/MATH]
$=ab(a^2+b^2+2ab-2cd)-cd(a^2+b^2+2a-2ab)$
$=ab(a^2+b^2+2ab)-2abcd-cd(a^2+b^2+2ab)+2abcd$
$=ab(a+b)^2-cd(a+b)^2$
$=(ab-cd)(a+b)^2$--(**)
Putting back what we have found in (**) back to (*), we see that we have proved $(a^3+b^3+c^3+d^3)^2=9(ab-cd)(bc-ad)(ca-bd)$, provided $a+b+c+d=0$.
No comments:
Post a Comment