Loading [MathJax]/extensions/TeX/color.js

Monday, February 29, 2016

Prove that (a3+b3+c3+d3)2=9(abcd)(bcad)(cabd).

Let a,b,c,d be real numbers such that a+b+c+d=0.

Prove that (a3+b3+c3+d3)2=9(abcd)(bcad)(cabd).

My solution:

First, we draw some very useful and helpful identities from the given equality,  a+b+c+d=0:

a+b+c+d=0

\displaystyle \color{yellow}\bbox[5px,purple]{a+b=-(c+d)}

(a+b)^2=(-(c+d))^2

a^2+b^2+2ab=c^2+d^2+2cd

\displaystyle \implies \color{yellow}\bbox[5px,green]{c^2+d^2=2(ab-cd)+a^2+b^2}

\displaystyle \implies \color{yellow}\bbox[5px,blue]{a^2+b^2-c^2-d^2+2ab-2cd=0}

\displaystyle \implies \color{black}\bbox[5px,orange]{a^2+b^2-c^2-d^2=2cd-2ab}

Also, note that a^3+b^3=(a+b)(a^2-ab+b^2).

We can now try to work on the LHS of the target equation to prove it equivalent to what it has on the RHS of the equation:

(a^3+b^3+c^3+d^3)^2

=((a+b)(a^2-ab+b^2)+(c+d)(c^2-cd+d^2))^2

=((a+b)(a^2-ab+b^2)-(a+b)(c^2-cd+d^2))^2 (since \displaystyle \color{yellow}\bbox[5px,purple]{a+b=-(c+d)})

=((a+b)(a^2-ab+b^2-c^2+cd-d^2))^2

=((a+b)(2cd-2ab-ab+cd))^2 \displaystyle \color{black}\bbox[5px,orange]{a^2+b^2-c^2-d^2=2cd-2ab}

=(a+b)^2(3cd-3ab)^2

=3^2(a+b)^2(cd-ab)^2

=9(a+b)^2(ab-cd)^2

=9(ab-cd)(a+b)^2(ab-cd)---(*)

The remaining effort now is to show that (a+b)^2(ab-cd)=(bc-ad)(ac-bd). If we can prove that, we're then done.

That shouldn't be too hard a thing to do, and we can prove it two ways, we can either prove it backwards ((bc-ad)(ac-bd)=(a+b)^2(ab-cd)) or forwards ((a+b)^2(ab-cd)=(bc-ad)(ac-bd)),  as long as we know how to algebraically manipulate with what we've established:

(bc-ad)(ac-bd)

=bcac-bcbd-adac+adbd

=abc^2-b^2cd-a^2cd+abd^2

=ab(c^2+d^2)-cd(a^2+b^2)

=ab(2(ab-cd)+a^2+b^2)-cd(a^2+b^2+2a-2ab) \displaystyle \color{yellow}\bbox[5px,green]{c^2+d^2=2(ab-cd)+a^2+b^2}

=ab(a^2+b^2+2ab-2cd)-cd(a^2+b^2+2a-2ab)

=ab(a^2+b^2+2ab)-2abcd-cd(a^2+b^2+2ab)+2abcd

=ab(a+b)^2-cd(a+b)^2

=(ab-cd)(a+b)^2--(**)

Putting back what we have found in (**) back to (*), we see that we have proved (a^3+b^3+c^3+d^3)^2=9(ab-cd)(bc-ad)(ca-bd), provided a+b+c+d=0.





No comments:

Post a Comment