Prove that (a3+b3+c3+d3)2=9(ab−cd)(bc−ad)(ca−bd).
My solution:
First, we draw some very useful and helpful identities from the given equality, a+b+c+d=0:
a+b+c+d=0
\displaystyle \color{yellow}\bbox[5px,purple]{a+b=-(c+d)}
(a+b)^2=(-(c+d))^2
a^2+b^2+2ab=c^2+d^2+2cd
\displaystyle \implies \color{yellow}\bbox[5px,green]{c^2+d^2=2(ab-cd)+a^2+b^2}
\displaystyle \implies \color{yellow}\bbox[5px,blue]{a^2+b^2-c^2-d^2+2ab-2cd=0}
\displaystyle \implies \color{black}\bbox[5px,orange]{a^2+b^2-c^2-d^2=2cd-2ab}
Also, note that a^3+b^3=(a+b)(a^2-ab+b^2).
We can now try to work on the LHS of the target equation to prove it equivalent to what it has on the RHS of the equation:
(a^3+b^3+c^3+d^3)^2
=((a+b)(a^2-ab+b^2)+(c+d)(c^2-cd+d^2))^2
=((a+b)(a^2-ab+b^2)-(a+b)(c^2-cd+d^2))^2 (since \displaystyle \color{yellow}\bbox[5px,purple]{a+b=-(c+d)})
=((a+b)(a^2-ab+b^2-c^2+cd-d^2))^2
=((a+b)(2cd-2ab-ab+cd))^2 \displaystyle \color{black}\bbox[5px,orange]{a^2+b^2-c^2-d^2=2cd-2ab}
=(a+b)^2(3cd-3ab)^2
=3^2(a+b)^2(cd-ab)^2
=9(a+b)^2(ab-cd)^2
=9(ab-cd)(a+b)^2(ab-cd)---(*)
The remaining effort now is to show that (a+b)^2(ab-cd)=(bc-ad)(ac-bd). If we can prove that, we're then done.
That shouldn't be too hard a thing to do, and we can prove it two ways, we can either prove it backwards ((bc-ad)(ac-bd)=(a+b)^2(ab-cd)) or forwards ((a+b)^2(ab-cd)=(bc-ad)(ac-bd)), as long as we know how to algebraically manipulate with what we've established:
(bc-ad)(ac-bd)
=bcac-bcbd-adac+adbd
=abc^2-b^2cd-a^2cd+abd^2
=ab(c^2+d^2)-cd(a^2+b^2)
=ab(2(ab-cd)+a^2+b^2)-cd(a^2+b^2+2a-2ab) \displaystyle \color{yellow}\bbox[5px,green]{c^2+d^2=2(ab-cd)+a^2+b^2}
=ab(a^2+b^2+2ab-2cd)-cd(a^2+b^2+2a-2ab)
=ab(a^2+b^2+2ab)-2abcd-cd(a^2+b^2+2ab)+2abcd
=ab(a+b)^2-cd(a+b)^2
=(ab-cd)(a+b)^2--(**)
Putting back what we have found in (**) back to (*), we see that we have proved (a^3+b^3+c^3+d^3)^2=9(ab-cd)(bc-ad)(ca-bd), provided a+b+c+d=0.
No comments:
Post a Comment