For $n\in N,n\geq 2$, prove that
[MATH]\sum_{k=1}^{n}(\dfrac{1}{2k-1}-\dfrac{1}{2k})>\dfrac {2n}{3n+1}[/MATH].
Note that
A collection of intriguing competition level problems for secondary school students.
Thursday, March 24, 2016
Tuesday, March 22, 2016
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.
Factorize $\cos^2 x+\cos^2 2x+\cos^2 3x+\cos 2x+\cos 4x+\cos 6x$.
My solution:
In a problem such as this one, two inclinations may arise:
My solution:
In a problem such as this one, two inclinations may arise:
Sunday, March 13, 2016
Thursday, March 10, 2016
Second Attempt: Let $a,\,b$ and $c$ be real numbers such that $(a-b)^3+(b-c)^3+(c-a)^3=9$. Prove that [MATH]\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\ge \sqrt[3]{3}[/MATH].
Let $a,\,b$ and $c$ be real numbers such that $(a-b)^3+(b-c)^3+(c-a)^3=9$.
Prove that [MATH]\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\ge \sqrt[3]{3}[/MATH].
Second attempt:
Prove that [MATH]\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\ge \sqrt[3]{3}[/MATH].
Second attempt:
Tuesday, March 8, 2016
Let $a,\,b$ and $c$ be real numbers such that $(a-b)^3+(b-c)^3+(c-a)^3=9$. Prove that [MATH]\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\ge \sqrt[3]{3}[/MATH].
Let $a,\,b$ and $c$ be real numbers such that $(a-b)^3+(b-c)^3+(c-a)^3=9$.
Prove that [MATH]\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\ge \sqrt[3]{3}[/MATH].
My solution:
Prove that [MATH]\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\ge \sqrt[3]{3}[/MATH].
My solution:
Sunday, March 6, 2016
Let $a\,b$ and $c$ be the sides of a triangle. Prove that [MATH]\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3[/MATH].
Let $a\,b$ and $c$ be the sides of a triangle.
Prove that [MATH]\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3[/MATH].
My solution:
[MATH]\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}[/MATH]
[MATH]=\frac{a^2}{a(b+c)-a^2}+\frac{b^2}{b(a+c)-b^2}+\frac{c^2}{c(a+b)-c^2}[/MATH]
[MATH]\ge 4\left(\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2\right)\,\,\text{since}\,\,a^2+\frac{(b+c)^2}{4}\ge a(b+c)[/MATH]
[MATH]\ge 4\left(\frac{\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2}{3}\right)\,\,\text{since}\,\,3(x^2+y^2+z^2)\ge (x+y+z)^2[/MATH]
[MATH]\ge 4\left(\frac{\left(\frac{3}{2}\right)^2}{3}\right)\,\,\text{from the Nesbitt's inequality}
[MATH]\ge 3[/MATH]
Prove that [MATH]\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3[/MATH].
My solution:
[MATH]\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}[/MATH]
[MATH]=\frac{a^2}{a(b+c)-a^2}+\frac{b^2}{b(a+c)-b^2}+\frac{c^2}{c(a+b)-c^2}[/MATH]
[MATH]\ge 4\left(\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2\right)\,\,\text{since}\,\,a^2+\frac{(b+c)^2}{4}\ge a(b+c)[/MATH]
[MATH]\ge 4\left(\frac{\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2}{3}\right)\,\,\text{since}\,\,3(x^2+y^2+z^2)\ge (x+y+z)^2[/MATH]
[MATH]\ge 4\left(\frac{\left(\frac{3}{2}\right)^2}{3}\right)\,\,\text{from the Nesbitt's inequality}
[MATH]\ge 3[/MATH]
Saturday, March 5, 2016
Evaluate [MATH]\left\lfloor{\frac{2014^3}{(2015)(2016)}+\frac{2016^3}{2014(2015)}}\right\rfloor[/MATH].
Evaluate [MATH]\left\lfloor{\frac{2014^3}{(2015)(2016)}+\frac{2016^3}{2014(2015)}}\right\rfloor[/MATH].
Let $x=2015$.
Therefore we see that we have:
Let $x=2015$.
Therefore we see that we have:
Friday, March 4, 2016
Analysis Quiz 21: Multiple-Choice Test (Improve Logical And Common Sense Reasoning In Learning Mathematics)
Question 1: What can you conclude to the sum of the series based on the sequence listed as follows?
[MATH]P=\frac{110}{100+1}+\frac{110}{100+2}+\frac{110}{100+2}+\cdots+\frac{110}{100+10}[/MATH]
A. [MATH]P\gt 1[/MATH].
B. [MATH]P\gt 10[/MATH].
C. [MATH]P\gt 100[/MATH].
[MATH]P=\frac{110}{100+1}+\frac{110}{100+2}+\frac{110}{100+2}+\cdots+\frac{110}{100+10}[/MATH]
A. [MATH]P\gt 1[/MATH].
B. [MATH]P\gt 10[/MATH].
C. [MATH]P\gt 100[/MATH].
Thursday, March 3, 2016
Wednesday, March 2, 2016
Solve for real solutions of the system below: [MATH]\small \frac{1}{x-1}+\frac{2}{x-2}+\frac{6}{x-6}+\frac{7}{x-7}=x^2-4x-4[/MATH]
Solve for real solutions of the system below:
[MATH]\frac{1}{x-1}+\frac{2}{x-2}+\frac{6}{x-6}+\frac{7}{x-7}=x^2-4x-4[/MATH]
My solution:
First of all, notice that if one wants to solve the given system by clearing the fraction on the left, one would definitely end up with having to solve the polynomial of degree 6, which is a giant PITA!
[MATH]\frac{1}{x-1}+\frac{2}{x-2}+\frac{6}{x-6}+\frac{7}{x-7}=x^2-4x-4[/MATH]
My solution:
First of all, notice that if one wants to solve the given system by clearing the fraction on the left, one would definitely end up with having to solve the polynomial of degree 6, which is a giant PITA!
Tuesday, March 1, 2016
Subscribe to:
Posts (Atom)