Let ab and c be the sides of a triangle.
Prove that ab+c−a+ba+c−b+ca+b−c≥3.
My solution:
ab+c−a+ba+c−b+ca+b−c
=a2a(b+c)−a2+b2b(a+c)−b2+c2c(a+b)−c2
≥4((ab+c)2+(bc+a)2+(ca+b)2)sincea2+(b+c)24≥a(b+c)
≥4((ab+c+bc+a+ca+b)23)since3(x2+y2+z2)≥(x+y+z)2
≥4((32)23)from the Nesbitt's inequality\displaystyle \ge 3$
No comments:
Post a Comment