Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Sunday, March 6, 2016

Let ab and c be the sides of a triangle. Prove that ab+ca+ba+cb+ca+bc3.

Let ab and c be the sides of a triangle.

Prove that ab+ca+ba+cb+ca+bc3.

My solution:

ab+ca+ba+cb+ca+bc

=a2a(b+c)a2+b2b(a+c)b2+c2c(a+b)c2

4((ab+c)2+(bc+a)2+(ca+b)2)sincea2+(b+c)24a(b+c)

4((ab+c+bc+a+ca+b)23)since3(x2+y2+z2)(x+y+z)2

4((32)23)from the Nesbitt's inequality\displaystyle \ge 3$


No comments:

Post a Comment