Processing math: 5%

Sunday, March 6, 2016

Let ab and c be the sides of a triangle. Prove that \displaystyle \frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3.

Let a\,b and c be the sides of a triangle.

Prove that \displaystyle \frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge 3.

My solution:

\displaystyle \frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}

\displaystyle =\frac{a^2}{a(b+c)-a^2}+\frac{b^2}{b(a+c)-b^2}+\frac{c^2}{c(a+b)-c^2}

\displaystyle \ge 4\left(\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2\right)\,\,\text{since}\,\,a^2+\frac{(b+c)^2}{4}\ge a(b+c)

\displaystyle \ge 4\left(\frac{\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2}{3}\right)\,\,\text{since}\,\,3(x^2+y^2+z^2)\ge (x+y+z)^2

\displaystyle \ge 4\left(\frac{\left(\frac{3}{2}\right)^2}{3}\right)\,\,\text{from the Nesbitt's inequality} \displaystyle \ge 3$


No comments:

Post a Comment