Processing math: 100%

Saturday, March 5, 2016

Evaluate 20143(2015)(2016)+201632014(2015).

Evaluate 20143(2015)(2016)+201632014(2015).

Let x=2015.

Therefore we see that we have:

20143(2015)(2016)+201632014(2015)=(x1)3x(x+1)+(x+1)3(x1)(x)=1x((x1)3x+1+(x+1)3x1)=1x((x1)4+(x+1)4(x1)(x+1))=1x(((x1)2)2+((x+1)2)2x21)=1x(((x1)2(x+1)2)2+2(x1)2(x+1)2x21)=1x(((2x)(2))2+2(x21)2x21)=1x(((x1+x+1)(x1x1))2+2(x21)2x21)=1x(16x2+2(x21)2x21)=16x2x(x21)+2(x21)2x(x21)=16xx21+2(x21)x=16xx21+2x2x2x=2x+16xx212x=2x=2(2015)=4030

We can omit and ignore the difference of 16xx212x in our last step since when x=2015, their difference must be a decimal.


No comments:

Post a Comment