Monday, December 19, 2016

You can find ❤️ in ...... Math!


Saturday, December 17, 2016

Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfying the condition: $a+x=b+y=c+z=1$ Prove the inequality [MATH]\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3[/MATH].

Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfying the condition:

$a+x=b+y=c+z=1$

Prove the inequality [MATH]\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3[/MATH].

My solution:

Rewrite the intended LHS of the inequality strictly in terms of a, b and c, we have:

$x=1-a,\,y=1-b,\,z=1-c$

[MATH]\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)[/MATH]

[MATH]=\left(abc+(1-a)(1-b)(1-c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)[/MATH]

[MATH]=\left(abc+1+ab+bc+ca-(a+b+c)-abc\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)[/MATH]

[MATH]=\left(1+ab+bc+ca-(a+b+c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)[/MATH]

[MATH]=\left(1-a(1-b)-b(1-c)-c(1-a)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)[/MATH]

[MATH]=\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}-1-a(1-b)\left(\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)[/MATH]

[MATH]\,\,\,\,\,\,-1-b(1-c)\left(\frac{1}{a(1-b)}+\frac{1}{c(1-a)}\right)-1-c(1-a)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}\right)[/MATH]

[MATH]=\frac{1-b(1-c)-c(1-a)}{a(1-b)}+\frac{1-a(1-b)-c(1-a)}{b(1-c)}+\frac{1-a(1-b)-b(1-c)}{c(1-a)}-3[/MATH]

[MATH]=\frac{1-b+bc-c+ca}{a(1-b)}+\frac{1-a+ab-c+ac}{b(1-c)}+\frac{1-a+ab-b+bc}{c(1-a)}-3[/MATH]

[MATH]=\frac{1-b-c(1-b)+ca}{a(1-b)}+\frac{1-c-a(1-c)+ab}{b(1-c)}+\frac{1-a-b(1-a)+bc}{c(1-a)}-3[/MATH]

[MATH]=\frac{(1-b)(1-c)+ca}{a(1-b)}+\frac{(1-a)(1-c)+ab}{b(1-c)}+\frac{(1-b)(1-a)+bc}{c(1-a)}-3[/MATH]

[MATH]=\frac{1-c}{a}+\frac{c}{1-b}+\frac{1-a}{b}+\frac{a}{1-c}+\frac{1-b}{c}+\frac{b}{1-a}-3[/MATH]

[MATH]\ge 6\sqrt[6]{\frac{1-c}{a}\cdot \frac{c}{1-b}\cdot\frac{1-a}{b}\cdot\frac{a}{1-c}\cdot\frac{1-b}{c}\cdot\frac{b}{1-a}}-3[/MATH] (By the AM-GM inequality, with $1-a,\,1-b,\,1-c$ are all positive)

[MATH]= 6-3[/MATH]

[MATH]= 3[/MATH] (Q.E.D.)


Thursday, December 15, 2016

Evaluate [MATH]\small\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor[/MATH] without using a calculator.

Evaluate [MATH]\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor[/MATH] without using a calculator.

My solution:

[MATH]\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)[/MATH]

[MATH]=\frac{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}{\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}[/MATH]

[MATH]=\frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}[/MATH]

By the Cauchy-Schwarz inequality, we have:

[MATH]\begin{align*}\sqrt{2}+\sqrt{3}+\sqrt{6}&<\sqrt{1+1+1}\sqrt{2+3+6}\\&=\sqrt{33}\end{align*}[/MATH]

Hence [MATH]\frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}>\frac{23}{\sqrt{33}}[/MATH].

From $528\lt 529$ we get, after taking the square root on both sides and rearranging:

$4\lt \dfrac{23}{\sqrt{33}}$

$\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\gt \dfrac{23}{\sqrt{33}}\gt 4$

On the other hand,

From $50\gt 49$, we get:

$\sqrt{2}\gt \dfrac{7}{5}$

From $12\gt 9$, we get:

$\sqrt{3}\gt \dfrac{3}{2}$

From $6\gt 4$, we get:

$\sqrt{6}\gt 2$

Adding them up gives:

$\sqrt{2}+\sqrt{3}+\sqrt{6}\gt 4.9$

$\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\lt \dfrac{23}{4.9}=4.69$.

We can conclude by now that [MATH]\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor=4.[/MATH]