Processing math: 0%

Thursday, December 15, 2016

Evaluate \displaystyle \small\left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor without using a calculator.

Evaluate \displaystyle \left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor without using a calculator.

My solution:

\displaystyle \left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)

\displaystyle =\frac{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}{\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}

\displaystyle =\frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}

By the Cauchy-Schwarz inequality, we have:

\displaystyle \begin{align*}\sqrt{2}+\sqrt{3}+\sqrt{6}&<\sqrt{1+1+1}\sqrt{2+3+6}\\&=\sqrt{33}\end{align*}

Hence \displaystyle \frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}>\frac{23}{\sqrt{33}}.

From 528\lt 529 we get, after taking the square root on both sides and rearranging:

4\lt \dfrac{23}{\sqrt{33}}

\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\gt \dfrac{23}{\sqrt{33}}\gt 4

On the other hand,

From 50\gt 49, we get:

\sqrt{2}\gt \dfrac{7}{5}

From 12\gt 9, we get:

\sqrt{3}\gt \dfrac{3}{2}

From 6\gt 4, we get:

\sqrt{6}\gt 2

Adding them up gives:

\sqrt{2}+\sqrt{3}+\sqrt{6}\gt 4.9

\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\lt \dfrac{23}{4.9}=4.69.

We can conclude by now that \displaystyle \left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor=4.

No comments:

Post a Comment