Evaluate \displaystyle \left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor without using a calculator.
My solution:
\displaystyle \left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)
\displaystyle =\frac{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}{\left(-\sqrt{2}-\sqrt{3}-\sqrt{6}\right)}
\displaystyle =\frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}
By the Cauchy-Schwarz inequality, we have:
\displaystyle \begin{align*}\sqrt{2}+\sqrt{3}+\sqrt{6}&<\sqrt{1+1+1}\sqrt{2+3+6}\\&=\sqrt{33}\end{align*}
Hence \displaystyle \frac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}>\frac{23}{\sqrt{33}}.
From 528\lt 529 we get, after taking the square root on both sides and rearranging:
4\lt \dfrac{23}{\sqrt{33}}
\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\gt \dfrac{23}{\sqrt{33}}\gt 4
On the other hand,
From 50\gt 49, we get:
\sqrt{2}\gt \dfrac{7}{5}
From 12\gt 9, we get:
\sqrt{3}\gt \dfrac{3}{2}
From 6\gt 4, we get:
\sqrt{6}\gt 2
Adding them up gives:
\sqrt{2}+\sqrt{3}+\sqrt{6}\gt 4.9
\therefore \dfrac{23}{\left(\sqrt{2}+\sqrt{3}+\sqrt{6}\right)}\lt \dfrac{23}{4.9}=4.69.
We can conclude by now that \displaystyle \left\lfloor{\left(-\sqrt{2}+\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{6}\right)}\right\rfloor=4.
No comments:
Post a Comment