a+x=b+y=c+z=1
Prove the inequality (abc+xyz)(1ay+1bz+1cx)≥3.
My solution:
Rewrite the intended LHS of the inequality strictly in terms of a, b and c, we have:
x=1−a,y=1−b,z=1−c
(abc+xyz)(1ay+1bz+1cx)
=(abc+(1−a)(1−b)(1−c))(1a(1−b)+1b(1−c)+1c(1−a))
=(abc+1+ab+bc+ca−(a+b+c)−abc)(1a(1−b)+1b(1−c)+1c(1−a))
=(1+ab+bc+ca−(a+b+c))(1a(1−b)+1b(1−c)+1c(1−a))
=(1−a(1−b)−b(1−c)−c(1−a))(1a(1−b)+1b(1−c)+1c(1−a))
=1a(1−b)+1b(1−c)+1c(1−a)−1−a(1−b)(1b(1−c)+1c(1−a))
−1−b(1−c)(1a(1−b)+1c(1−a))−1−c(1−a)(1a(1−b)+1b(1−c))
=1−b(1−c)−c(1−a)a(1−b)+1−a(1−b)−c(1−a)b(1−c)+1−a(1−b)−b(1−c)c(1−a)−3
=1−b+bc−c+caa(1−b)+1−a+ab−c+acb(1−c)+1−a+ab−b+bcc(1−a)−3
=1−b−c(1−b)+caa(1−b)+1−c−a(1−c)+abb(1−c)+1−a−b(1−a)+bcc(1−a)−3
=(1−b)(1−c)+caa(1−b)+(1−a)(1−c)+abb(1−c)+(1−b)(1−a)+bcc(1−a)−3
=1−ca+c1−b+1−ab+a1−c+1−bc+b1−a−3
≥66√1−ca⋅c1−b⋅1−ab⋅a1−c⋅1−bc⋅b1−a−3 (By the AM-GM inequality, with 1−a,1−b,1−c are all positive)
=6−3
=3 (Q.E.D.)
No comments:
Post a Comment