We are given to evaluate:
[math]S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right][/math]
My solution:
Using the identity:
[math]\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)[/math]
we may write:
[math]S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right][/math]
Now, using the fact that:
[math]k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}[/math]
and the identity:
[math]\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}[/math]
We may now write:
[math]S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right][/math]
This is a telescoping series, hence:
[math]S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)[/math]
Using the identity:
[math]\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}[/math]
We may also write:
[math]S_n=\tan^{-1}(n+1)[/math]
And so we have found:
[math]\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)[/math]
No comments:
Post a Comment