Processing math: 100%

Wednesday, April 22, 2015

Trigonometric Inequality

Show that :

(sinx+acosx)(sinx+bcosx)1+(a+b2)2

Let:

A=tan1(a)

B=tan1(b)

Using a linear combination, we may write the inequality as:

(1+a2)(1+b2)sin(x+A)sin(x+B)1+(a+b2)2

Let:

f(x)=sin(x+A)sin(x+B)

Thus, differentiating with respect to x, we obtain::

f(x)=sin(2x+A+B)

f(x)=2cos(2x+A+B)

Then f(x) has its maxima for:

x=(2k+1)π(A+B)2 where kZ

We then find:

f((2k+1)π(A+B)2)=sin((2k+1)π(A+B)2+A)sin((2k+1)π(A+B)2+B)=

sin((2k+1)π+AB2)sin((2k+1)πA+B2)=

cos(AB)cos((2k+1)π)2=cos(AB)+12=

cos(A)cos(B)+sin(A)sin(B)+12=

1+ab+(1+a2)(1+b2)2(1+a2)(1+b2)

Now, we need only show:

(1+a2)(1+b2)f((2k+1)π(A+B)2)1+(a+b2)2

1+ab+(1+a2)(1+b2)21+(a+b2)2

2+2ab+2(1+a2)(1+b2)4+a2+2ab+b2

2(1+a2)(1+b2)2+a2+b2

4a2b2+4a2+4b2+4a4+2a2b2+4a2+b4+4b2+4

2a2b2a4+b4

0(a2b2)2

QED

No comments:

Post a Comment