Show that :
(sinx+acosx)(sinx+bcosx)≤1+(a+b2)2
Let:
A=tan−1(a)
B=tan−1(b)
Using a linear combination, we may write the inequality as:
√(1+a2)(1+b2)sin(x+A)sin(x+B)≤1+(a+b2)2
Let:
f(x)=sin(x+A)sin(x+B)
Thus, differentiating with respect to x, we obtain::
f′(x)=sin(2x+A+B)
f″(x)=2cos(2x+A+B)
Then f(x) has its maxima for:
x=(2k+1)π−(A+B)2 where k∈Z
We then find:
f((2k+1)π−(A+B)2)=sin((2k+1)π−(A+B)2+A)sin((2k+1)π−(A+B)2+B)=
sin((2k+1)π+A−B2)sin((2k+1)π−A+B2)=
cos(A−B)−cos((2k+1)π)2=cos(A−B)+12=
cos(A)cos(B)+sin(A)sin(B)+12=
1+ab+√(1+a2)(1+b2)2√(1+a2)(1+b2)
Now, we need only show:
√(1+a2)(1+b2)f((2k+1)π−(A+B)2)≤1+(a+b2)2
1+ab+√(1+a2)(1+b2)2≤1+(a+b2)2
2+2ab+2√(1+a2)(1+b2)≤4+a2+2ab+b2
2√(1+a2)(1+b2)≤2+a2+b2
4a2b2+4a2+4b2+4≤a4+2a2b2+4a2+b4+4b2+4
2a2b2≤a4+b4
0≤(a2−b2)2
QED
No comments:
Post a Comment