In the (previous blog post), we were asked to prove a 21th USA Mathematical Olympiad 1992 Problem:
Let k=1∘, show that 88∑n=01cos(nk)cos(n+1)k=cosksin2k
But we have already worked out an trigonometric identity where:
sin1∘sinx∘sin(x∘+1∘)=cotx∘−cot(x∘+1∘)
Since
sinx∘=cos(90∘−x∘) and sin(x∘+1∘)=cos(90∘−(x∘+1∘))
We can alter the way we have it at the LHS of the identity above in such a way that we obtain:
sin1∘cos(90∘−x∘)cos(90∘−(x∘+1∘))=cotx∘−cot(x∘+1∘)
Therefore, if we have x=1∘ all the way up to x=89∘, adding them all up we see that:
sin1∘cos(89∘)cos(88∘)=cot1∘−cot(2∘)
sin1∘cos(88∘)cos(87∘)=cot2∘−cot(3∘)
sin1∘cos(87∘)cos(86∘)=cot3∘−cot(4∘)
⋮
sin1∘cos(3∘)cos(2∘)=cot87∘−cot(88∘)
sin1∘cos(2∘)cos(1∘)=cot88∘−cot(89∘)
sin1∘cos(1∘)cos(0∘)=cot89∘−cot(90∘)
Therefore we get the addend as follows:
sin1∘cos(89∘)cos(88∘)+sin1∘cos(88∘)cos(87∘)+⋯+sin1∘cos(1∘)cos(0∘)
=cot1∘−cot(2∘)+cot2∘−cot(3∘)+⋯+cot88∘−cot(89∘)+cot89∘−cot(90∘)
=cot1∘−cot(90∘)
=cot1∘
k=1∘ yields:
∴88∑n=0sin1∘cos(n∘)cos(n∘+1∘)=cot1∘=cos1∘sin1∘
i.e.
88∑n=01cos(n∘)cos(n∘+1∘)=cos1∘sin21∘
we're hence done.
No comments:
Post a Comment