My solution:
Let f(x)=x6+10x5+70x4+288x3+880x2+1600x+1792=(x2+ax+b)(x2+px+q)(x2+mx+n), we notice then that
1.
where each of the discriminant for each quadratic factor is less than zero (since we're told f(x) has all 6 complex roots) and
2.
a,b,p,q,m,n∈N since the the coefficient on the leading term is 1.
When x=−1, we get:
\color{black}845=\color{yellow}\bbox[5px,purple]{(b-a+1)}\color{black}\bbox[5px,orange]{(q-p+1)}\color{orange}\bbox[5px,blue]{(n-m+1)}
5\cdot 13 \cdot 13 =(b-a+1)(q-p+1)(n-m+1)
When x=1, we have:
4641=(b+a+1)(p+q+1)(m+n+1)
3\cdot 7 \cdot 13 \cdot 17 =(b+a+1)(q+p+1)(n+m+1)
If we let \color{yellow}\bbox[5px,purple]{b-a+1=5}, \color{black}\bbox[5px,orange]{q-p+1=13} and \color{orange}\bbox[5px,blue]{n-m+1=13}, we obtain:
\begin{align*}3\cdot 7 \cdot 13 \cdot 17&=(b+a+1)(q+p+1)(n+m+1)\\&=(b-a+1+a+a)(q-p+1+p+p)(n-m+1+m+m)\\&=(\color{yellow}\bbox[5px,purple]{(b-a+1)}\color{black}+2a)(\color{black}\bbox[5px,orange]{(q-p+1)}\color{black}+2p)(\color{orange}\bbox[5px,blue]{(n-m+1)}\color{black}+2m)\\&=(5+2a)(13+2p)(13+2m)\end{align*}
Now, if we consider for one more case that is when x=-2, that gives:
x^6+10x^5+70x^4+288x^3+880x^2+1600x+1792=(x^2+ax+b)(x^2+px+q)(x^2+mx+n)
672=(4-2a+b)(4-2p+q)(4-2m+n)
672=(3-a+1-a+b)(3-p+1-p+q)(3-m+1-m+n)
672=(3-a+\color{yellow}\bbox[5px,purple]{(b-a+1)}\color{black})(3-p+\color{black}\bbox[5px,orange]{(q-p+1)}\color{black})(3-m+\color{orange}\bbox[5px,blue]{(n-m+1)}\color{black})
672=(8-a)(16-p)(16-m)
2^5\cdot 3 \cdot 7=(8-a)(16-p)(16-m)
Now, if we focus solely on the conditions
\displaystyle \color{yellow}\bbox[5px,green]{3\cdot 7 \cdot 13 \cdot 17 =(5+2a)(13+2p)(13+2m)} and \displaystyle \color{black}\bbox[5px,yellow]{2^5\cdot 3 \cdot 7=(8-a)(16-p)(16-m)},
It's easy to check that a=4,\,p=2,\,m=4 satisfy the condition and that yields b=8,\,p=14,\,m=16 and hence
x^2+ax+b=x^2+4x+8=0 gives the complex roots of -2 \pm 2i.
x^2+px+q=x^2+2x+14=0 gives the complex roots of -1 \pm \sqrt{13}i.
x^2+mx+n=x^2+4x+16=0 gives the complex roots of -2\pm2\sqrt{3}i.
No comments:
Post a Comment