Processing math: 100%

Monday, September 14, 2015

Hard Inequality Problem

Let x,y,z be real numbers such that 6x+2y+3z=12+xyz.

Prove that (x2+1)(y2+9)(z2+4)144.

Note that

(x2+1)(y2+9)(z2+4)(6x+2y+3zxyz)2

=4x2y2+12x2yz+9x2z2+4xy2z+6xyz224xy36xz+y2z212yz+36

=(9x2z2+y2z2+6xyz2)+(4x2y224xy+36)+(12x2yz+4xy2z36xz12yz)

=(3xz+yz)2+4(xy3)2+4(3x2yz+xy2z9xz3yz)

=(3xz+yz)2+4(xy3)2+4(3x2yz9xz+xy2z3yz)

=(3xz+yz)2+4(xy3)2+4(3xz(xy3)+yz(xy3))

=(3xz+yz)2+4(3xz+yz)(xy3)+4(xy3)2

=a2+4ab+4b2=(a+2b)2

=(3xz+yz+2(xy3))2

And since we're given 6x+2y+3z=12+xyz, i.e. 6x+2y+3zxyz=12, we can conclude that

(x2+1)(y2+9)(z2+4)=(6x+2y+3zxyz)2+(3xz+yz+2(xy3))2122=144

and we're hence done.


No comments:

Post a Comment