Let x,y,z be real numbers such that 6x+2y+3z=12+xyz.
Prove that (x2+1)(y2+9)(z2+4)≥144.
Note that
(x2+1)(y2+9)(z2+4)−(6x+2y+3z−xyz)2
=4x2y2+12x2yz+9x2z2+4xy2z+6xyz2−24xy−36xz+y2z2−12yz+36
=(9x2z2+y2z2+6xyz2)+(4x2y2−24xy+36)+(12x2yz+4xy2z−36xz−12yz)
=(3xz+yz)2+4(xy−3)2+4(3x2yz+xy2z−9xz−3yz)
=(3xz+yz)2+4(xy−3)2+4(3x2yz−9xz+xy2z−3yz)
=(3xz+yz)2+4(xy−3)2+4(3xz(xy−3)+yz(xy−3))
=(3xz+yz)2+4(3xz+yz)(xy−3)+4(xy−3)2
=a2+4ab+4b2=(a+2b)2
=(3xz+yz+2(xy−3))2
And since we're given 6x+2y+3z=12+xyz, i.e. 6x+2y+3z−xyz=12, we can conclude that
(x2+1)(y2+9)(z2+4)=(6x+2y+3z−xyz)2+(3xz+yz+2(xy−3))2≥122=144
and we're hence done.
No comments:
Post a Comment