Prove that: $\left\lfloor{\sqrt{n}+\dfrac{1}{\sqrt{n}+\sqrt{n+2}}}\right\rfloor= \left\lfloor{\sqrt{n}}\right\rfloor$, for all $n\in N$.
My solution:
Step 1:
First, note that the expression inside the floor function on the left can be rewritten such that we have:
$\sqrt{n}+\dfrac{1}{\sqrt{n}+\sqrt{n+2}}$
$=\sqrt{n}+\dfrac{1}{\sqrt{n}+\sqrt{n+2}}\cdot \dfrac{\sqrt{n}-\sqrt{n+2}}{\sqrt{n}-\sqrt{n+2}}$
$=\sqrt{n}+\dfrac{\sqrt{n}-\sqrt{n+2}}{n-(n+2)}$
$=\sqrt{n}-\dfrac{\sqrt{n}-\sqrt{n+2}}{2}$
$=\sqrt{n}+\dfrac{\sqrt{n+2}-\sqrt{n}}{2}$
$=\dfrac{\sqrt{n}+\sqrt{n+2}}{2}$
Step 2:
Next, note that for all $n\in N$, $4\sqrt{n}\gt -2$ is always true. Algebraically manipulating it such that we get:
$n+4\sqrt{n}+4\gt -2+n+4$
$(\sqrt{n}+2)^2\gt n+2$
$\sqrt{n}+2\gt \sqrt{n+2}$
Therefore we have:
$\sqrt{n}+\sqrt{n}+2\gt \sqrt{n}+\sqrt{n+2}$, which is
$2\sqrt{n}+2\gt \sqrt{n}+\sqrt{n+2}$
Step 3:
Note that we can set:
$\sqrt{n}+\sqrt{n}\lt \sqrt{n}+\sqrt{n+2}\lt 2\sqrt{n}+2$
which is
$2\sqrt{n}\lt \sqrt{n}+\sqrt{n+2}\lt 2(\sqrt{n}+1)$
$\sqrt{n}\lt \dfrac{\sqrt{n}+\sqrt{n+2}}{2}\lt \sqrt{n}+1$
Thus, we can conclude at this juncture that $\left\lfloor{\dfrac{\sqrt{n}+\sqrt{n+2}}{2}}\right\rfloor=\left\lfloor{\sqrt{n}+\dfrac{1}{\sqrt{n}+\sqrt{n+2}}}\right\rfloor=\left\lfloor{\sqrt{n}}\right\rfloor$ and we're hence done.
i dont Think that you can draw that conclusion simple because sqrt(x) is not necessarily an integer. för example if x € (2.3 , 3.3) then the integer part of x could either 2 or 3.
ReplyDeleteSébastien