Prove $\large 1000!^{\frac{1}{1000}}>999!^{\frac{1}{999}}$.
This inequality would be easy to prove if one uses the more advance knowledge, like Stirling's formula where it states when $n\rightarrow \infty$ then we have $n!\approx \dfrac{n^n}{e^n}\sqrt{2\pi n}$.
But, elementary method works well too in this problem.
Below is my solution that I want to share:
It is not hard to see that
$2^2\gt 2! $, $3^3\gt 3! $, and so on and so forth...
Therefore we have
$n^n\gt n! $ holds for all positive integer $n\ge 2$
$\dfrac{1}{n!}\gt \dfrac{1}{n^n}$
$\dfrac{n!^n}{n!}\gt \dfrac{n!^n}{n^n}$
$\dfrac{n!^n}{n!}\gt \dfrac{(n(n-1)!)^n}{n^n}$
$\dfrac{n!^n}{n!}\gt \dfrac{n^n(n-1)!^n}{n^n}$
$\dfrac{n!^n}{n!}\gt \dfrac{\cancel{n^n}(n-1)!^n}{\cancel{n^n}}$
$n!^{n-1}\gt (n-1)!^n$
$n!^{\frac{1}{n}}\gt (n-1)!^{\frac{1}{n-1}}$
Therefore, we have proved the more general case and if we let $n=1000$, we have
$\large 1000!^{\frac{1}{1000}}\gt (999)!^{\frac{1}{999}}$
and we're hence done.
No comments:
Post a Comment