MarkFL's solution:
If we observe that:
[MATH]g(x)=\sin^2(x)\tan(x)[/MATH]
[MATH]h(x)=\cos^2(x)\cot(x)[/MATH]
are complimentary functions, we can state the problem as:
Optimize the objective function:
[MATH]f(x,y)=\sin^2(x)\tan(x)+\sin^2(y)\tan(y)[/MATH]
Subject to the constraints:
[MATH]x+y=\frac{\pi}{2}[/MATH]
[MATH]0\lt x,\,y \lt \frac{\pi}{2}[/MATH]
And so...wait for it...can you guess where I'm going with this?...Yes! By cyclic symmetry, we know the critical point is:
[MATH](x,y)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)[/MATH]
And we then find:
[MATH]f\left(\frac{\pi}{4},\frac{\pi}{4}\right)=1[/MATH]
Checking another point on the constraint, such as:
[MATH](x,y)=\left(\frac{\pi}{6},\frac{\pi}{3}\right)[/MATH]
We find:
[MATH]f\left(\frac{\pi}{6},\frac{\pi}{3}\right)=\frac{5}{2\sqrt{3}}>1[/MATH]
And so we know:
[MATH]f_{\min}=1[/MATH]
No comments:
Post a Comment