Processing math: 4%

Saturday, April 16, 2016

For real numbers 0<x<π2, prove that \cos^2 x \cot x+\sin^2 x \tan x\ge 1. (First Solution)

For real numbers \displaystyle 0\lt x\lt \frac{\pi}{2}, prove that \cos^2 x \cot x+\sin^2 x \tan x\ge 1.

MarkFL's solution:

If we observe that:

\displaystyle g(x)=\sin^2(x)\tan(x)

\displaystyle h(x)=\cos^2(x)\cot(x)

are complimentary functions, we can state the problem as:

Optimize the objective function:

\displaystyle f(x,y)=\sin^2(x)\tan(x)+\sin^2(y)\tan(y)

Subject to the constraints:

\displaystyle x+y=\frac{\pi}{2}

\displaystyle 0\lt x,\,y \lt \frac{\pi}{2}

And so...wait for it...can you guess where I'm going with this?...Yes! By cyclic symmetry, we know the critical point is:

\displaystyle (x,y)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)

And we then find:

\displaystyle f\left(\frac{\pi}{4},\frac{\pi}{4}\right)=1

Checking another point on the constraint, such as:

\displaystyle (x,y)=\left(\frac{\pi}{6},\frac{\pi}{3}\right)

We find:

\displaystyle f\left(\frac{\pi}{6},\frac{\pi}{3}\right)=\frac{5}{2\sqrt{3}}>1

And so we know:

\displaystyle f_{\min}=1

No comments:

Post a Comment