MarkFL's solution:
If we observe that:
\displaystyle g(x)=\sin^2(x)\tan(x)
\displaystyle h(x)=\cos^2(x)\cot(x)
are complimentary functions, we can state the problem as:
Optimize the objective function:
\displaystyle f(x,y)=\sin^2(x)\tan(x)+\sin^2(y)\tan(y)
Subject to the constraints:
\displaystyle x+y=\frac{\pi}{2}
\displaystyle 0\lt x,\,y \lt \frac{\pi}{2}
And so...wait for it...can you guess where I'm going with this?...Yes! By cyclic symmetry, we know the critical point is:
\displaystyle (x,y)=\left(\frac{\pi}{4},\frac{\pi}{4}\right)
And we then find:
\displaystyle f\left(\frac{\pi}{4},\frac{\pi}{4}\right)=1
Checking another point on the constraint, such as:
\displaystyle (x,y)=\left(\frac{\pi}{6},\frac{\pi}{3}\right)
We find:
\displaystyle f\left(\frac{\pi}{6},\frac{\pi}{3}\right)=\frac{5}{2\sqrt{3}}>1
And so we know:
\displaystyle f_{\min}=1
No comments:
Post a Comment