Let a,b,c∈R such that a+bc=b+ca=c+ab
What is the numerical value of the expression (a+b)(b+c)(c+a)(8100−7(899)−7(898)−⋯−7(8))abc?
My solution:
From the identity an−1=(a−1)(an−1+an−2+⋯+a+1), we can rewrite 8100−7(899)−7(898)−⋯−7(8) as:
8100−7(899)−7(898)−⋯−7(8)=8100−7(8)(898+897+⋯+1)=8100−7(8)(8−1)(898+897+⋯+1)(8−1)=8100−7(8)(8−1)(898+897+⋯+1)7=8100−8(899−1)=8100−8100+8=8
Now, if we let a+bc=b+ca=c+ab=x, we get
a+b=cx,b+c=ca,c+a=bx
Adding these above three gives:
2(a+b+c)=x(a+b+c)
That means x=2 or a+b+c=0,i.e.a+b=−c⟹a+bc=−1=x.
Therefore,
(a+b)(b+c)(c+a)(8100−7(899)−7(898)−⋯−7(8))abc
=(a+b)(b+c)(c+a)(8)abc
=(x3)(8)
=((−1)3)(8)or=((2)3)(8)
=−8or=64
No comments:
Post a Comment