Let a,b,c∈R such that a+bc=b+ca=c+ab
What is the numerical value of the expression (a+b)(b+c)(c+a)(8100−7(899)−7(898)−⋯−7(8))abc?
My solution:
From the identity an−1=(a−1)(an−1+an−2+⋯+a+1), we can rewrite 8100−7(899)−7(898)−⋯−7(8) as:
\displaystyle \begin{align*}8^{100}-7(8^{99})-7(8^{98})-\cdots-7(8)&=8^{100}-7(8)(8^{98}+8^{97}+\cdots+1)\\&=8^{100}-\frac{7(8)(8-1)(8^{98}+8^{97}+\cdots+1)}{(8-1)}\\&=8^{100}-\frac{7(8)\color{yellow}\bbox[5px,purple]{(8-1)(8^{98}+8^{97}+\cdots+1)}}{7}\\&=8^{100}-8\color{yellow}\bbox[5px,purple]{(8^{99}-1)}\\&=8^{100}-8^{100}+8\\&=8\end{align*}
Now, if we let \displaystyle \frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=x, we get
\displaystyle a+b=cx,\,b+c=ca,\,c+a=bx
Adding these above three gives:
\displaystyle 2(a+b+c)=x(a+b+c)
That means x=2 or a+b+c=0, i.e. a+b=-c\implies \frac{a+b}{c}=-1=x.
Therefore,
\displaystyle \frac{(a + b)(b + c)(c + a)(8^{100}-7(8^{99})-7(8^{98})-\cdots-7(8))}{abc}
\displaystyle =\frac{(a + b)(b + c)(c + a)(8)}{abc}
\displaystyle =(x^3)(8)
\displaystyle =((-1)^3)(8)\stackrel{\text{or}}{=}((2)^3)(8)
\displaystyle =-8\stackrel{\text{or}}{=}64
No comments:
Post a Comment