Let $a,\,b,\,c \in \Bbb{R}$ such that [MATH]\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}[/MATH]
What is the numerical value of the expression [MATH]\frac{(a + b)(b + c)(c + a)(8^{100}-7(8^{99})-7(8^{98})-\cdots-7(8))}{abc}[/MATH]?
My solution:
From the identity $a^n-1=(a-1)(a^{n-1}+a^{n-2}+\cdots+a+1)$, we can rewrite [MATH]8^{100}-7(8^{99})-7(8^{98})-\cdots-7(8)[/MATH] as:
[MATH]\begin{align*}8^{100}-7(8^{99})-7(8^{98})-\cdots-7(8)&=8^{100}-7(8)(8^{98}+8^{97}+\cdots+1)\\&=8^{100}-\frac{7(8)(8-1)(8^{98}+8^{97}+\cdots+1)}{(8-1)}\\&=8^{100}-\frac{7(8)\color{yellow}\bbox[5px,purple]{(8-1)(8^{98}+8^{97}+\cdots+1)}}{7}\\&=8^{100}-8\color{yellow}\bbox[5px,purple]{(8^{99}-1)}\\&=8^{100}-8^{100}+8\\&=8\end{align*}[/MATH]
Now, if we let [MATH]\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=x[/MATH], we get
[MATH]a+b=cx,\,b+c=ca,\,c+a=bx[/MATH]
Adding these above three gives:
[MATH]2(a+b+c)=x(a+b+c)[/MATH]
That means $x=2$ or $a+b+c=0, i.e. a+b=-c\implies \frac{a+b}{c}=-1=x$.
Therefore,
[MATH]\frac{(a + b)(b + c)(c + a)(8^{100}-7(8^{99})-7(8^{98})-\cdots-7(8))}{abc}[/MATH]
[MATH]=\frac{(a + b)(b + c)(c + a)(8)}{abc}[/MATH]
[MATH]=(x^3)(8)[/MATH]
[MATH]=((-1)^3)(8)\stackrel{\text{or}}{=}((2)^3)(8)[/MATH]
[MATH]=-8\stackrel{\text{or}}{=}64[/MATH]
No comments:
Post a Comment