Processing math: 100%

Friday, April 22, 2016

What is the numerical value of the expression (a+b)(b+c)(c+a)(81007(899)7(898)7(8))abc?

Let a,b,cR such that a+bc=b+ca=c+ab

What is the numerical value of the expression (a+b)(b+c)(c+a)(81007(899)7(898)7(8))abc?

My solution:

From the identity an1=(a1)(an1+an2++a+1), we can rewrite 81007(899)7(898)7(8) as:

81007(899)7(898)7(8)=81007(8)(898+897++1)=81007(8)(81)(898+897++1)(81)=81007(8)(81)(898+897++1)7=81008(8991)=81008100+8=8

Now, if we let a+bc=b+ca=c+ab=x, we get

a+b=cx,b+c=ca,c+a=bx

Adding these above three gives:

2(a+b+c)=x(a+b+c)

That means x=2 or a+b+c=0,i.e.a+b=ca+bc=1=x.

Therefore,

(a+b)(b+c)(c+a)(81007(899)7(898)7(8))abc

=(a+b)(b+c)(c+a)(8)abc

=(x3)(8)

=((1)3)(8)or=((2)3)(8)

=8or=64

No comments:

Post a Comment