Let $a,\,b$ and $c$ be positive real numbers satisfying $a+b+c=1$.
Prove that $9abc\ge7(ab+bc+ca)-2$.
My solution:
Schur's inequality says, for all positive real $a,\,b$ and $c$, we have:
$9abc\ge 4(ab+bc+ca)(a+b+c)-(a+b+c)^3$(*)
In our case, we're given $a+b+c=1$, so substituting that into (*) yields
$9abc\ge 4(ab+bc+ca)-1$(**)
If we can prove $4(ab+bc+ca)-1\ge 7(ab+bc+ca)-2$, then we're done.
From the Cauchy-Schwarz inequality, we have:
$a^2+b^2+c^2\ge ab+bc+ca\implies (a+b+c)^2\ge 3(ab+bc+ca)$
Therefore, with $a+b+c=1$, the above inequality becomes
$1\ge 3(ab+bc+ca)$
Add the quantity $4(ab+bc+ca)-2$ to both sides we obtain:
$4(ab+bc+ca)-2+1\ge 4(ab+bc+ca)-2+3(ab+bc+ca)$
$4(ab+bc+ca)-1\ge 7(ab+bc+ca)-2$ (Q.E.D.)
No comments:
Post a Comment