x, y and z are three acute angles from a triangle.
Find the minimum value of tan7x(tanytanz−1)+tan7y(tanxtanz−1)+tan7z(tanxtany−1).
The trick for solving this problem fast and effective depends on if you could use the implicit relation between x,y and z when they are the angles from a triangle:
tanx+tany+tanz=tanxtanytanz
By using AM-GM inequality, we know tanx+tany+tanz≥33√tanxtanytanz. Replace tanx+tany+tanz by tanxtanytanz, we get:
tanxtanytanz≥33√tanxtanytanz
tanxtanytanz≥3√3
tanxtanytanz≥(3)32
Going back to the objective function, we need to minimize
tan7x(tanytanz−1)+tan7y(tanxtanz−1)+tan7z(tanxtany−1)
We attempt at doing that by replacing
tanytanz by tanx+tany+tanztanx
tanxtanz by tanx+tany+tanztany
tanxtany by tanx+tany+tanztanz
tan7x(tanytanz−1)+tan7y(tanxtanz−1)+tan7z(tanxtany−1)
=tan7x(tanx+tany+tanztanx−1)+tan7y(tanx+tany+tanztany−1)+tan7z(tanx+tany+tanztanz−1)
=tan6x(tanx+tany+tanz)−tan7x+tan6y(tanx+tany+tanz)−tan7y+tan6z(tanx+tany+tanz)−tan7z
=(tan6x+tan6y+tan6z)(tanx+tany+tanz)−(tan7x+tan7y+tan7z)
=(tan7x+tan7y+tan7z+tan6xtany+tan6xtanz+tan6ytanx+tan6ytanz+tan6ztanx+tan6ztany)−(tan7x+tan7y+tan7z)
=tan6xtany+tan6xtanz+tan6ytanx+tan6ytanz+tan6ztanx+tan6ztany
Now, apply the AM-GM inequality we obtain:
tan7x(tanytanz−1)+tan7y(tanxtanz−1)+tan7z(tanxtany−1)
=tan6xtany+tan6xtanz+tan6ytanx+tan6ytanz+tan6ztanx+tan6ztany
≥66√tan14xtan14ytan14z
≥6(tan14xtan14ytan14z)146
≥6(tan14xtan14ytan14z)213
≥6((3)32)213
≥6((3)72)
≥6(33√3)
≥162√3)
Equality attains when tanx=tany=tanz, i.e. tanx+tanx+tanx=tanxtanxtanx, 3tanx=tan3x, tanx=+√3=tany=tanz.
No comments:
Post a Comment