Following previous blog post, we have shown that if
If A,\, B,\,C are three angles from a triangle, i.e. A+B+C=\pi, then we should have known the following equality holds.
\displaystyle \tan A+\tan B+\tan C=\tan A\tan B\tan C
On this blog post, we now try to generate another relation between A,\,B and C for cotangent functions:
1.
A+B+C=\pi
A+B=\pi-C
Taking the sine on both sides of the equation:
\sin (A+B)=\sin (\pi-C)
\sin A \cos B+\cos A\sin B=\sin\pi \cos C-\cos \pi \sin C
\sin A \cos B+\cos A\sin B=(0)( \cos C)-(-1)(\sin C)
\sin A \cos B+\cos A\sin B=\sin C---(1)
Taking the cosine on both sides of the equation:
\cos (A+B)=\cos (\pi-C)
\cos A \cos B-\sin A\sin B=\cos \pi \cos C+\sin \pi \sin C
\cos A \cos B-\sin A\sin B=(-1)( \cos C)+(0)(\sin C)
\cos A \cos B-\sin A\sin B=-\cos C---(2)
Dividing (2) by (1), we see that we have:
\displaystyle \frac{\cos A \cos B-\sin A\sin B}{\sin A \cos B+\cos A\sin B}=\frac{-\cos C}{\sin C}
Dividing the numerator and denominator on the left by \sin A\sin B, we get:
\displaystyle \frac{\frac{\cos A \cos B}{\sin A\sin B}-\frac{\sin A\sin B}{\sin A\sin B}}{\frac{\sin A \cos B}{\sin A\sin B}+\frac{\cos A \sin B}{\sin A \sin B}}=-\cot C
\displaystyle \frac{\cot A \cot B-1}{\cot B+\cot A}=-\cot C
\displaystyle \cot A \cot B-1=(-\cot C)(\cot B+\cot A)
\displaystyle \cot A \cot B-1=-\cot C\cot B-\cot C \cot A)
\displaystyle \color{yellow}\bbox[5px,green]{\cot A \cot B+\cot B\cot C+\cot A\cot C=1}
2.
A+B+C=\pi
\displaystyle \frac{A}{2}+\frac{B}{2}=\frac{\pi}{2}-\frac{C}{2}
Taking the sine on both sides of the equation:
\displaystyle \sin \left(\frac{A}{2}+\frac{B}{2}\right)=\sin \left(\frac{\pi}{2}-\frac{C}{2}\right)
\displaystyle \sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2}\sin \frac{B}{2}=\sin\frac{\pi}{2} \cos \frac{C}{2}-\cos \frac{\pi}{2} \sin \frac{C}{2}
\displaystyle \sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2}\sin \frac{B}{2}=(1)\cos \frac{C}{2}-(0)\sin \frac{C}{2}
\displaystyle \sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2}\sin \frac{B}{2}=\cos \frac{C}{2}---(3)
Taking the cosine on both sides of the equation:
\displaystyle \cos \left(\frac{A}{2}+\frac{B}{2}\right)=\cos \left(\frac{\pi}{2}-\frac{C}{2}\right)
\displaystyle \cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2}\sin \frac{B}{2}=\cos \frac{\pi}{2} \cos \frac{C}{2}+\sin \frac{\pi}{2} \sin \frac{C}{2}
\displaystyle \cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2}\sin \frac{B}{2}=(0) \cos \frac{C}{2}+(1) \sin \frac{C}{2}
\displaystyle \cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2}\sin \frac{B}{2}= \sin \frac{C}{2}---(4)
Dividing (3) by (4), we see that we have:
\displaystyle \frac{\sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2}\sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2}\sin \frac{B}{2}}=\frac{\cos \frac{C}{2}}{\sin \frac{C}{2}}
\displaystyle \frac{\sin \frac{A}{2} \cos \frac{B}{2}+\cos \frac{A}{2}\sin \frac{B}{2}}{\cos \frac{A}{2} \cos \frac{B}{2}-\sin \frac{A}{2}\sin \frac{B}{2}}=\cot \frac{C}{2}
Dividing the numerator and denominator on the left by \sin \frac{A}{2}\sin \frac{B}{2}, we get:
\displaystyle \frac{\frac{\sin \frac{A}{2} \cos \frac{B}{2}}{\sin \frac{A}{2}\sin \frac{B}{2}}+\frac{cos \frac{A}{2}\sin \frac{B}{2}}{\sin \frac{A}{2}\sin \frac{B}{2}}}{\frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\sin \frac{A}{2}\sin \frac{B}{2}}-\frac{\sin \frac{A}{2}\sin \frac{B}{2}}{\sin \frac{A}{2}\sin \frac{B}{2}}}=\cot \frac{C}{2}
\displaystyle \frac{\cot \frac{B}{2}+\cot \frac{A}{2}}{\cot \frac{A}{2} \cot \frac{B}{2}-1}=\cot \frac{C}{2}
\displaystyle \cot \frac{B}{2}+\cot \frac{A}{2}=\cot \frac{A}{2} \cot \frac{B}{2}\cot \frac{C}{2} -\cot \frac{C}{2}
\displaystyle \color{yellow}\bbox[5px,purple]{\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cot \frac{B}{2}\cot \frac{C}{2} }
No comments:
Post a Comment