Prove that $(a-2)(b-2)(c-2)\le 1$.
My solution:
Note that
$(a−2)(b−2)(c−2)$
$=abc\left(\dfrac{a-2}{a}\right)\left(\dfrac{b-2}{b}\right)\left(\dfrac{c-2}{c}\right)$
$=abc\left(1-\dfrac{2}{a}\right)\left(1-\dfrac{2}{b}\right)\left(1-\dfrac{2}{c}\right)$
$=abc\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{2}{a}\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{2}{b}\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{2}{c}\right)$
$=abc\left(\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a}\right)\left(\dfrac{1}{a}+\dfrac{1}{c}-\dfrac{1}{b}\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)$
We now use the famous identity that says for all real and positive $x,\,y$ and $z$, we have
$xyz\ge (x+y-z)(x+z-y)(y+z-x)$
In our case, we have $x=\dfrac{1}{a},\,y=\dfrac{1}{b},\,z=\dfrac{1}{c}$ and so we get
$\dfrac{1}{abc}\ge \left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)\left(\dfrac{1}{a}+\dfrac{1}{c}-\dfrac{1}{b}\right)\left(\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a}\right)$
i.e.
$abc\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)\left(\dfrac{1}{a}+\dfrac{1}{c}-\dfrac{1}{b}\right)\left(\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a}\right)\le 1$
The proof is then follows.
Equality occurs when $a=b=c=3$.
Well done Belle. Good job! :-))
ReplyDeleteAww...thank you Michelle for your nice compliment, I appreciate it!
ReplyDelete