Let A,B be acute angles such that tanB=2015sinAcosA−2015sin2AtanB.
Find the greatest possible value of tanB.
This is a fun IMO problem, since it has many ways (all are nothing less than remarkable) to approach it and without any further ado, I will post with the first approach here:
tanB=2015sinAcosA−2015sin2AtanB
tanB(1+2015sin2A)=2015sinAcosA
tanB=2015sinAcosA1+2015sin2A(*)
Using the double angle formulas for both sine and cosine functions that says:
sin2A=2sinAcosA; cos2A=1−2sin2A
We turn the equation in (*) into:
tanB=2015sin2A21+2015(1−cos2A2)
Simplifying gives
tanB=2015sin2A2017−2015cos2A
We're asked to look for the maximal of tanB, that is to say, the maximum value of the RHS of the equation above.
Let y=tanB such that we have:
y=2015sin2A2017−2015cos2A
We adopt the calculus (differentiation method) to look for the maximum point for the function of y.
Let us find the first derivative of y, we have:
y′=(2017−2015cos2A)(2(2015)cos2A)−(2015sin2A)(2(2015)sin2A)(2017−2015cos2A)2=2(2015)(2017cos2A−2015(sin22A+cos22A))(2017−2015cos2A)2=2(2015)(2017cos2A−2015)(2017−2015cos2A)2
The stationary point(s) occur at y′=0, i.e. when:
2017cos2A−2015=0, which implies \displaystyle \color{yellow}\bbox[5px,purple]{\cos A=\dfrac{2015}{2017}} (Or A\approx 0.044536\,\,\text{rad}) and \displaystyle \color{yellow}\bbox[5px,red]{\sin A=\dfrac{\sqrt{2017^2-2015^2}}{2017}}.
We need to determine if this value will lead to a maximum, minimum or inflexion point.
At maximum points, the gradient is positive just before the maximum, it is zero at the maximum and it is negative just after the maximum.
A= 0.04452\,\,\text{rad} yields y'\gt0;
A= 0.04454\,\,\text{rad} yields y'\lt0;
Therefore, we get a maximum point at \displaystyle \color{yellow}\bbox[5px,purple]{\cos A=\dfrac{2015}{2017}} and \displaystyle \color{yellow}\bbox[5px,red]{\sin A=\dfrac{\sqrt{2017^2-2015^2}}{2017}}. and hence this gives the maximal \tan B as:
\begin{align*}(\tan B)_{\text{max}}&=\dfrac{2015\sin 2A}{2017-2015\cos 2A}\\&=\dfrac{2015\left(\dfrac{\sqrt{2017^2-2015^2}}{2017}\right)}{2017-2015\left(\dfrac{2015}{2017}\right)}\\&=\dfrac{2015\sqrt{2(4032)}}{2(4032)}\\&=\dfrac{2015}{\sqrt{2(4032)}}\\&=\dfrac{2015}{24\sqrt{14}}\end{align*}
and we're hence done.
The other approach, the more ingenious and clever strategy (provided by the smart solver) has successfully avoided the calculus route to determine the maximal of \tan B.
No comments:
Post a Comment