Find the minimum value of $xy$, given that $x^2+y^2+z^2=7$, $xy+xz+yz=4$, and $x, y$ and $z$ are real numbers.
This third method is provided by Mark, another blog contributor and he approached the problem using the well-known Lagrange multipliers method:
We are given the objective function:
[MATH]f(x,y,z)=xy[/MATH]
subject to the constraints:
[MATH]g(x,y,z)=x^2+y^2+z^2-7=0[/MATH]
[MATH]h(x,y,z)=xy+xz+yz-4=0[/MATH]
Using Lagrange Multipliers, we obtain:
[MATH]y=\lambda(2x)+\mu(y+z)[/MATH]
[MATH]x=\lambda(2y)+\mu(x+z)[/MATH]
[MATH]0=\lambda(2z)+\mu(x+y)[/MATH]
Adding, we then get:
[MATH]x+y=2(x+y+z)(\lambda+\mu)[/MATH]
The third equation gives us:
[MATH]\mu=-\lambda\frac{2z}{x+y}[/MATH]
Hence:
[MATH]\lambda=\frac{(x+y)^2}{2(x+y+z)(x+y-2z)}[/MATH]
[MATH]\mu=-\frac{z(x+y)}{(x+y+z)(x+y-2z)}[/MATH]
And so, using the first equation, we find:
[MATH]y=\frac{x(x+y)^2}{(x+y+z)(x+y-2z)}-\frac{z(x+y)(y+z)}{(x+y+z)(x+y-2z)}[/MATH]
[MATH]y(x+y+z)(x+y-2z)=x(x+y)^2-z(x+y)(y+z)[/MATH]
This reduces to:
[MATH]z^2=(x+y)^2[/MATH]
Using the second equation, we obtain:
[MATH]x(x+y+z)(x+y-2z)=y(x+y)^2-z(x+y)(x+z)[/MATH]
This results in complex values for $z$.
Thus, the first constraint becomes:
[MATH]2x^2+2xy+2y^2-7=0[/MATH]
And from the second, we find:
[MATH]2x^2+6xy+2y^2-8=0[/MATH]
Subtracting the first of these last two results from the second, we obtain:
[MATH]4xy=1\implies xy=\frac{1}{4}[/MATH]
No comments:
Post a Comment