Processing math: 100%

Tuesday, June 2, 2015

Putnam Contest Problem: Evaluate π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.

Putnam Contest Problem:

Evaluate π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.

Solution provided by Mark, another contributor of this blog.

Let:

I=π20cos4(x)+sin(x)cos3(x)+sin2(x)cos2(x)+sin3(x)cos(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx(1)

Using the identity:

a0f(x)dx=a0f(ax)dx

Along with co-function identities for sine and cosine and a bit of rearranging, we find:

I=π20sin4(x)+cos(x)sin3(x)+cos2(x)sin2(x)+cos3(x)sin(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx(2)

Adding (1) and (2), there results:

2I=π20sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx=π20dx=π2

Hence:

I=π4

And so in conclusion, we have found:

π20cos4(x)+sin(x)cos3(x)+sin2(x)cos2(x)+sin3(x)cos(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx=π4


No comments:

Post a Comment