Processing math: 8%

Tuesday, June 2, 2015

Putnam Contest Problem: Evaluate π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.

Putnam Contest Problem:

Evaluate \displaystyle \int_{0}^{\dfrac{\pi}{2}} \dfrac{\cos^4 x+\sin x\cos^3x+\sin^2 x\cos^2 x+\sin^3x\cos x}{\sin^4 x+\cos^4 x+2\sin x\cos^3 x+2\sin^2 x\cos^2 x+2\sin^3 x\cos x}\,dx.

Solution provided by Mark, another contributor of this blog.

Let:

\displaystyle \small I= \int_{0}^{\frac{\pi}{2}} \frac{\cos^4(x)+\sin(x)\cos^3(x)+\sin^2(x)\cos^2(x)+\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx-(1)

Using the identity:

\displaystyle \int_0^a f(x)\,dx=\int_0^a f(a-x)\,dx

Along with co-function identities for sine and cosine and a bit of rearranging, we find:

\displaystyle \small I= \int_{0}^{\frac{\pi}{2}} \frac{\sin^4(x)+\cos(x)\sin^3(x)+\cos^2(x)\sin^2(x)+\cos^3(x)\sin(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx-(2)

Adding (1) and (2), there results:

\displaystyle \small 2I= \int_{0}^{\frac{\pi}{2}} \frac{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx=\int_0^{\frac{\pi}{2}}\,dx=\frac{\pi}{2}

Hence:

\displaystyle I=\frac{\pi}{4}

And so in conclusion, we have found:

\displaystyle \small \int_{0}^{\frac{\pi}{2}} \frac{\cos^4(x)+\sin(x)\cos^3(x)+\sin^2(x)\cos^2(x)+\sin^3(x)\cos(x)}{\sin^4(x)+\cos^4(x)+2\sin(x)\cos^3 (x)+2\sin^2(x)\cos^2(x)+2\sin^3(x)\cos(x)}\,dx=\frac{\pi}{4}


No comments:

Post a Comment