Putnam Contest Problem:
Evaluate ∫π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.
Solution provided by Mark, another contributor of this blog.
Let:
I=∫π20cos4(x)+sin(x)cos3(x)+sin2(x)cos2(x)+sin3(x)cos(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx−(1)
Using the identity:
∫a0f(x)dx=∫a0f(a−x)dx
Along with co-function identities for sine and cosine and a bit of rearranging, we find:
I=∫π20sin4(x)+cos(x)sin3(x)+cos2(x)sin2(x)+cos3(x)sin(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx−(2)
Adding (1) and (2), there results:
2I=∫π20sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx=∫π20dx=π2
Hence:
I=π4
And so in conclusion, we have found:
∫π20cos4(x)+sin(x)cos3(x)+sin2(x)cos2(x)+sin3(x)cos(x)sin4(x)+cos4(x)+2sin(x)cos3(x)+2sin2(x)cos2(x)+2sin3(x)cos(x)dx=π4
No comments:
Post a Comment