Evaluate ∫π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.
Solution of mine, which is different from the previously posted method provided by Mark(putnam-contest-problem):
Let I=∫π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.
I=∫π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx=(cos4x+sinxcos3x+sin2xcos2x+sin3xcosx)÷(cos4x)(sin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosx)÷(cos4x)dx=∫π201+tanx+tan2x+tan3xtan4x+1+2tanx+2tan2x+2tan3xdx=∫π201+tanx+tan2x+tan3x(tan4x+tan3x+tan2x+tanx)+(tan3x+tan2x+tanx+1)dx=∫π20(1+tanx+tan2x+tan3x)tanx(tan3x+tan2x+tanx+1)+(tan3x+tan2x+tanx+1)dx=∫π201tanx+1dx=∫π20cosxsinx+cosxdx
My solution is based on work backwards method, because I noticed whenever the integrand is of rational function with the denominator function as the sum of sine and cosine function, then I know the its anti-derivative must contain the natural logarithm function of the sum of sine and cosine function as well, that is to say, I realized:
ddxln(sinx+cosx)=cosx−sinxsinx+cosx;ddx(x)=1
And
1+cosx−sinxsinx+cosx=sinx+cosx+cosx−sinxsinx+cosx=2cosxsinx+cosx
Therefore, it's not hard to combine them both wisely to get
ddx(x2+ln(sinx+cosx))=12+cosx−sinxsinx+cosx=12(2cosxsinx+cosx)=cosxsinx+cosx
Hence, we have:
I=∫π20cosxsinx+cosxdx=(x2+ln(sinx+cosx))π20=(π4+ln(1+0))−(0+ln(0+1))=π4
No comments:
Post a Comment