Processing math: 100%

Friday, June 12, 2015

Work backwards Putnam IMO Contest Problem

Putnam Contest Problem:

Evaluate π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.

Solution of mine, which is different from the previously posted method provided by Mark(putnam-contest-problem):

Let I=π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx.

I=π20cos4x+sinxcos3x+sin2xcos2x+sin3xcosxsin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosxdx=(cos4x+sinxcos3x+sin2xcos2x+sin3xcosx)÷(cos4x)(sin4x+cos4x+2sinxcos3x+2sin2xcos2x+2sin3xcosx)÷(cos4x)dx=π201+tanx+tan2x+tan3xtan4x+1+2tanx+2tan2x+2tan3xdx=π201+tanx+tan2x+tan3x(tan4x+tan3x+tan2x+tanx)+(tan3x+tan2x+tanx+1)dx=π20(1+tanx+tan2x+tan3x)tanx(tan3x+tan2x+tanx+1)+(tan3x+tan2x+tanx+1)dx=π201tanx+1dx=π20cosxsinx+cosxdx

My solution is based on work backwards method, because I noticed whenever the integrand is of rational function with the denominator function as the sum of sine and cosine function, then I know the its anti-derivative must contain the natural logarithm function of the sum of sine and cosine function as well, that is to say, I realized:

ddxln(sinx+cosx)=cosxsinxsinx+cosx;ddx(x)=1

And

1+cosxsinxsinx+cosx=sinx+cosx+cosxsinxsinx+cosx=2cosxsinx+cosx

Therefore, it's not hard to combine them both wisely to get

ddx(x2+ln(sinx+cosx))=12+cosxsinxsinx+cosx=12(2cosxsinx+cosx)=cosxsinx+cosx

Hence, we have:

I=π20cosxsinx+cosxdx=(x2+ln(sinx+cosx))π20=(π4+ln(1+0))(0+ln(0+1))=π4

No comments:

Post a Comment