Tuesday, June 28, 2016

Find the real solution(s) to the system $\sqrt{4a-b^2}=\sqrt{b+2}+\sqrt{4a^2+b}$.

Find the real solution(s) to the system

$\sqrt{4a-b^2}=\sqrt{b+2}+\sqrt{4a^2+b}$.

My solution:

Sunday, June 26, 2016

Prove that [MATH]\frac{1}{a^3+b^3+abc}+\frac{1}{a^3+b^3+abc}+\frac{1}{a^3+b^3+abc}\le \frac{1}{abc}[/MATH] for all positive real $a,\,b$ and $c$.

Prove that [MATH]\frac{1}{a^3+b^3+abc}+\frac{1}{a^3+b^3+abc}+\frac{1}{a^3+b^3+abc}\le \frac{1}{abc}[/MATH] for all positive real $a,\,b$ and $c$.

My solution:

Thursday, June 23, 2016

Let $a,\,b,\,c,\,x,\,y$ and $z$ be strictly positive real numbers, prove that [MATH](a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)\ge 20[/MATH].

Let $a,\,b,\,c,\,x,\,y$ and $z$ be strictly positive real numbers, prove that

[MATH](a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)\ge 20[/MATH].

Tuesday, June 21, 2016

Given that [MATH]\frac{\sin 3x}{\sin x}=\frac{6}{5}[/MATH], what is the ratio of [MATH]\frac{\sin 5x}{\sin x}[/MATH]?

Given that [MATH]\frac{\sin 3x}{\sin x}=\frac{6}{5}[/MATH], what is the ratio of [MATH]\frac{\sin 5x}{\sin x}[/MATH]?

My solution:

Thursday, June 16, 2016

For positive reals $a,\,b,\,c$, prove that [MATH]\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\gt 2[/MATH].

Hello readers!

In my previous blog post, I asked the readers to spot the factual mistake(s) that I might have or might not have made in the solution (of mine) to one delicious inequality problem.

Today, I am going to discuss with you the mistake that I intentionally made.

Saturday, June 11, 2016

For positive reals $a,\,b,\,c$, prove that [MATH]\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\gt 2[/MATH].

For positive reals $a,\,b,\,c$, prove that [MATH]\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\gt 2[/MATH].

Hello all!

Today I'm going to post something that is going to be very different than my style in my previous blog posts, as today I wanted to train students to spot the factual mistake(s) that I might have or might not have made in the following solution (of mine) to today's delicious inequality problem.

Tuesday, June 7, 2016

Prove the following inequality holds: $\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$.

Let the reals $a, b, c∈(1,\,∞)$ with $a + b + c = 9$.

Prove the following inequality holds:

$\sqrt{(\log_3a^b +\log_3a^c)}+\sqrt{(\log_3b^c +\log_3b^a)}+\sqrt{(\log_3c^a +\log_3c^b)}\le 3\sqrt{6}$.

My solution:

Saturday, June 4, 2016

Let the real $x\in \left(0,\,\dfrac{\pi}{2}\right)$, prove that $\dfrac{\sin^3 x}{5}+\dfrac{\cos^3 x}{12}≥ \dfrac{1}{13}$.

Let the real $x\in \left(0,\,\dfrac{\pi}{2}\right)$, prove that $\dfrac{\sin^3 x}{5}+\dfrac{\cos^3 x}{12}≥ \dfrac{1}{13}$.