Processing math: 4%

Tuesday, June 21, 2016

Given that sin3xsinx=65, what is the ratio of \displaystyle \frac{\sin 5x}{\sin x}?

Given that \displaystyle \frac{\sin 3x}{\sin x}=\frac{6}{5}, what is the ratio of \displaystyle \frac{\sin 5x}{\sin x}?

My solution:

From the "Componendo And Dividendo Rule", we have:

\displaystyle \frac{\sin 3x}{\sin x}=\frac{6}{5}---(1)

\displaystyle \frac{\sin 3x-\sin x}{\sin x}=\frac{6-5}{5}

\displaystyle \frac{2\cos \left(\frac{3x+x}{2}\right)\sin \left(\frac{3x-x}{2}\right)}{\sin x}=\frac{1}{5}

\displaystyle \frac{2\cos 2x\sin x}{\sin x}=\frac{1}{5}

\displaystyle 2\cos 2x=\frac{1}{5}

\displaystyle \cos 2x=\frac{1}{10}

Now we let \displaystyle \frac{\sin 5x}{\sin x}=k---(2).

Subtracting the equations (1) from (2) we get:

\displaystyle \frac{\sin 5x-\sin 3x}{\sin x}=k-\frac{6}{5}

\displaystyle \frac{2\cos \left(\frac{5x+3x}{2}\right) \sin \left(\frac{5x-3x}{2}\right)}{\sin x}=k-\frac{6}{5}

\displaystyle \frac{2\cos 4x \sin x}{\sin x}=k-\frac{6}{5}

\displaystyle 2\cos 4x =k-\frac{6}{5}

\displaystyle 2(2\cos^2 2x-1) =k-\frac{6}{5}

\displaystyle 2\left(2\left(\frac{1}{10}\right)^2 -1\right) =k-\frac{6}{5}

\displaystyle k=2\left(2\left(\frac{1}{10}\right)^2 -1\right) +\frac{6}{5}=-\frac{19}{25}, therefore

\displaystyle \frac{\sin 5x}{\sin x}=k=-\frac{19}{25}

No comments:

Post a Comment