Given that \displaystyle \frac{\sin 3x}{\sin x}=\frac{6}{5}, what is the ratio of \displaystyle \frac{\sin 5x}{\sin x}?
My solution:
From the "Componendo And Dividendo Rule", we have:
\displaystyle \frac{\sin 3x}{\sin x}=\frac{6}{5}---(1)
\displaystyle \frac{\sin 3x-\sin x}{\sin x}=\frac{6-5}{5}
\displaystyle \frac{2\cos \left(\frac{3x+x}{2}\right)\sin \left(\frac{3x-x}{2}\right)}{\sin x}=\frac{1}{5}
\displaystyle \frac{2\cos 2x\sin x}{\sin x}=\frac{1}{5}
\displaystyle 2\cos 2x=\frac{1}{5}
\displaystyle \cos 2x=\frac{1}{10}
Now we let \displaystyle \frac{\sin 5x}{\sin x}=k---(2).
Subtracting the equations (1) from (2) we get:
\displaystyle \frac{\sin 5x-\sin 3x}{\sin x}=k-\frac{6}{5}
\displaystyle \frac{2\cos \left(\frac{5x+3x}{2}\right) \sin \left(\frac{5x-3x}{2}\right)}{\sin x}=k-\frac{6}{5}
\displaystyle \frac{2\cos 4x \sin x}{\sin x}=k-\frac{6}{5}
\displaystyle 2\cos 4x =k-\frac{6}{5}
\displaystyle 2(2\cos^2 2x-1) =k-\frac{6}{5}
\displaystyle 2\left(2\left(\frac{1}{10}\right)^2 -1\right) =k-\frac{6}{5}
\displaystyle k=2\left(2\left(\frac{1}{10}\right)^2 -1\right) +\frac{6}{5}=-\frac{19}{25}, therefore
\displaystyle \frac{\sin 5x}{\sin x}=k=-\frac{19}{25}
No comments:
Post a Comment