Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Tuesday, June 21, 2016

Given that sin3xsinx=65, what is the ratio of sin5xsinx?

Given that sin3xsinx=65, what is the ratio of sin5xsinx?

My solution:

From the "Componendo And Dividendo Rule", we have:

sin3xsinx=65(1)

sin3xsinxsinx=655

2cos(3x+x2)sin(3xx2)sinx=15

2cos2xsinxsinx=15

2cos2x=15

cos2x=110

Now we let sin5xsinx=k(2).

Subtracting the equations (1) from (2) we get:

sin5xsin3xsinx=k65

2cos(5x+3x2)sin(5x3x2)sinx=k65

2cos4xsinxsinx=k65

2cos4x=k65

2(2cos22x1)=k65

2(2(110)21)=k65

k=2(2(110)21)+65=1925, therefore

sin5xsinx=k=1925

No comments:

Post a Comment