Given that sin3xsinx=65, what is the ratio of sin5xsinx?
My solution:
From the "Componendo And Dividendo Rule", we have:
sin3xsinx=65−−−(1)
sin3x−sinxsinx=6−55
2cos(3x+x2)sin(3x−x2)sinx=15
2cos2xsinxsinx=15
2cos2x=15
cos2x=110
Now we let sin5xsinx=k−−−(2).
Subtracting the equations (1) from (2) we get:
sin5x−sin3xsinx=k−65
2cos(5x+3x2)sin(5x−3x2)sinx=k−65
2cos4xsinxsinx=k−65
2cos4x=k−65
2(2cos22x−1)=k−65
2(2(110)2−1)=k−65
k=2(2(110)2−1)+65=−1925, therefore
sin5xsinx=k=−1925
No comments:
Post a Comment