Processing math: 5%

Thursday, June 23, 2016

Let a,b,c,x,y and z be strictly positive real numbers, prove that \displaystyle (a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)\ge 20.

Let a,\,b,\,c,\,x,\,y and z be strictly positive real numbers, prove that

\displaystyle (a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)\ge 20.

My solution:

\displaystyle (a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)

\displaystyle =abc+abz+bcx+acy+ayz+bxz+xyc+xyz+\frac{1}{ax}+\frac{1}{ax}+\frac{1}{ax}+\frac{1}{ax}

\displaystyle \,\,\,\,+\frac{1}{by}+\frac{1}{by}+\frac{1}{by}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{cz}+\frac{1}{cz}+\frac{1}{cz}

\displaystyle \ge 20\sqrt[20]{abc(abz)(bcx)(acy)(ayz)(bxz)(xyc)(xyz)\left(\frac{1}{ax}\right)^4\left(\frac{1}{by}\right)^4\left(\frac{1}{cz}\right)^4}

\displaystyle = 20\sqrt[20]{1}

\displaystyle = 20 (Q.E.D.)

Equality occurs when a=b=c=x=y=z=1.


No comments:

Post a Comment