Let a,\,b,\,c,\,x,\,y and z be strictly positive real numbers, prove that
\displaystyle (a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)\ge 20.
My solution:
\displaystyle (a+x)(b+y)(c+z)+4\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}\right)
\displaystyle =abc+abz+bcx+acy+ayz+bxz+xyc+xyz+\frac{1}{ax}+\frac{1}{ax}+\frac{1}{ax}+\frac{1}{ax}
\displaystyle \,\,\,\,+\frac{1}{by}+\frac{1}{by}+\frac{1}{by}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{cz}+\frac{1}{cz}+\frac{1}{cz}
\displaystyle \ge 20\sqrt[20]{abc(abz)(bcx)(acy)(ayz)(bxz)(xyc)(xyz)\left(\frac{1}{ax}\right)^4\left(\frac{1}{by}\right)^4\left(\frac{1}{cz}\right)^4}
\displaystyle = 20\sqrt[20]{1}
\displaystyle = 20 (Q.E.D.)
Equality occurs when a=b=c=x=y=z=1.
No comments:
Post a Comment