Let a,b,c,x,y and z be strictly positive real numbers, prove that
(a+x)(b+y)(c+z)+4(1ax+1by+1cz)≥20.
My solution:
(a+x)(b+y)(c+z)+4(1ax+1by+1cz)
=abc+abz+bcx+acy+ayz+bxz+xyc+xyz+1ax+1ax+1ax+1ax
+1by+1by+1by+1by+1cz+1cz+1cz+1cz
≥2020√abc(abz)(bcx)(acy)(ayz)(bxz)(xyc)(xyz)(1ax)4(1by)4(1cz)4
=2020√1
=20 (Q.E.D.)
Equality occurs when a=b=c=x=y=z=1.
No comments:
Post a Comment