First, multiply the first and second fraction (top and bottom) from the LHS of the intended inequality by sinx and cosx respectively to get:
sin3x5+cos3x12=sin4x5sinx+cos4x12cosx(*)
Since sinx and cosx are both positive reals in the given domain, we can apply the Titu's Lemma to the RHS of (*) to get:
sin4x5sinx+cos4x12cosx≥(sin2x+cos2x)25sinx+12cosx≥1√52+122sin(x+tan−1125)≥113sin(x+tan−1125)≥113sincesin(x+tan−1125)≤1forx∈(0,π2)
No comments:
Post a Comment