Prove that 1a3+b3+abc+1a3+b3+abc+1a3+b3+abc≤1abc for all positive real a,b and c.
My solution:
1a3+b3+abc+1b3+c3+abc+1c3+a3+abc
=1(a+b)(a2−ab+b2)+abc+1(b+c)(b2−bc+c2)+abc+1(c+a)(c2−ca+a2)+abc
≤1(a+b)(2ab−ab)+abc+1(b+c)(2bc−bc)+abc+1(c+a)(2ca−ca)+abc (from AM-GM inequality)
=1(a+b)ab+abc+1(b+c)bc+abc+1(c+a)ca+abc
=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)
=1a+b+c(1ab+1bc+1ca)
=1a+b+c(cabc+aabc+bcab)
=1abc(1a+b+c)(a+b+c)
=1abc (Q.E.D.)
Equality occurs when a=b=c.
No comments:
Post a Comment