Processing math: 100%

Sunday, June 26, 2016

Prove that 1a3+b3+abc+1a3+b3+abc+1a3+b3+abc1abc for all positive real a,b and c.

Prove that 1a3+b3+abc+1a3+b3+abc+1a3+b3+abc1abc for all positive real a,b and c.

My solution:

1a3+b3+abc+1b3+c3+abc+1c3+a3+abc

=1(a+b)(a2ab+b2)+abc+1(b+c)(b2bc+c2)+abc+1(c+a)(c2ca+a2)+abc

1(a+b)(2abab)+abc+1(b+c)(2bcbc)+abc+1(c+a)(2caca)+abc (from AM-GM inequality)

=1(a+b)ab+abc+1(b+c)bc+abc+1(c+a)ca+abc

=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)

=1a+b+c(1ab+1bc+1ca)

=1a+b+c(cabc+aabc+bcab)

=1abc(1a+b+c)(a+b+c)

=1abc (Q.E.D.)

Equality occurs when a=b=c.

No comments:

Post a Comment