Let the reals a,b,c∈(1,∞) with a+b+c=9.
Prove the following inequality holds:
√(log3ab+log3ac)+√(log3bc+log3ba)+√(log3ca+log3cb)≤3√6.
My solution:
By applying the Cauchy-Schwarz inequality to the LHS of the intended inequality gives
√(log3ab+log3ac)+√(log3bc+log3ba)+√(log3ca+log3cb)
≤√1+1+1√log3ab+log3ac+log3bc+log3ba+log3ca+log3cb
=√3√log3aa+log3ab+log3ac+log3ba+log3bb+log3bc+log3ca+log3cb+log3cc−log3aa−log3bb−log3cc
=√3√log3aa+b+c+log3ba+b+c+log3ca+b+c−(log3aa+log3bb+log3cc)
=√3√(a+b+c)log3abc−(log3aa+log3bb+log3cc)
=√3√9log333−(log3aa+log3bb+log3cc) since a+b+c=9≥33√abc⟹abc≤33
=√3√27−(alog3a+blog3b+clog3c)
Now, if we're to study the nature of the function for f(a)=alog3a, we know it's a concave up and an increasing function, we could use the Jensen's inequality to figure out the minimum of alog3a+blog3b+clog3c:
alog3a+blog3b+clog3c3≥a+b+c3log3(a+b+c3)=93log3(93)=3
∴alog3a+blog3b+clog3c=3(3)=9
Now we get the maximum of the LHS of the intended inequality as:
√(log3ab+log3ac)+√(log3bc+log3ba)+√(log3ca+log3cb)≤√3√27−(alog3a+blog3b+clog3c)≤√3√27−9=√3√18=√9√6=3√6
with equality when a=b=c=3.
No comments:
Post a Comment