Find all positive integers [MATH]n[/MATH] for which [MATH]\sqrt{n+\sqrt{1996}}[/MATH] exceeds [MATH]\sqrt{n-1}[/MATH] by an integer.
My solution:
Let [MATH]\sqrt{n+\sqrt{1996}}-\sqrt{n-1}=k[/MATH], where [MATH]k[/MATH] is a positive integer.
[MATH]\sqrt{n+\sqrt{1996}}=k+\sqrt{n-1}[/MATH]
Squaring both sides we get:
[MATH]n+\sqrt{1996}=k^2+n-1+2k\sqrt{n-1}[/MATH]
[MATH]\cancel{n}+\sqrt{1996}=k^2+\cancel{n}-1+\sqrt{4k^2(n-1)}[/MATH]
[MATH]\begin{align*}\sqrt{1996}+1&=k^2+\sqrt{4k^2(n-1)}\\&\ge k^2+\sqrt{4k^2}=k^2+2k\end{align*}[/MATH]
since $n\ge 1$
Pressing on the calculator the square root of $1996$ gives us $\approx 44.6766$, so, we know $45^2\gt 1996$, thus we can have the following reasoning:
Since $45^2=2025\gt 1996$, we then have:
$\sqrt{45^2}\gt \sqrt{1996}$
$45+1\gt \sqrt{1996}+1\ge k^2+2k$
$46\gt k^2+2k$
$k^2+2k-46 \lt 0$
Solving it for $k$, we have $-7\le k \le 5$ which implies $0\le k \le 5$.
Checking it for each case, there is only a solution to the problem, and that is when
$k=1$, which leads to [MATH]n=500[/MATH].
No comments:
Post a Comment