Find all positive integers \displaystyle n for which \displaystyle \sqrt{n+\sqrt{1996}} exceeds \displaystyle \sqrt{n-1} by an integer.
My solution:
Let \displaystyle \sqrt{n+\sqrt{1996}}-\sqrt{n-1}=k, where \displaystyle k is a positive integer.
\displaystyle \sqrt{n+\sqrt{1996}}=k+\sqrt{n-1}
Squaring both sides we get:
\displaystyle n+\sqrt{1996}=k^2+n-1+2k\sqrt{n-1}
\displaystyle \cancel{n}+\sqrt{1996}=k^2+\cancel{n}-1+\sqrt{4k^2(n-1)}
\displaystyle \begin{align*}\sqrt{1996}+1&=k^2+\sqrt{4k^2(n-1)}\\&\ge k^2+\sqrt{4k^2}=k^2+2k\end{align*}
since n\ge 1
Pressing on the calculator the square root of 1996 gives us \approx 44.6766, so, we know 45^2\gt 1996, thus we can have the following reasoning:
Since 45^2=2025\gt 1996, we then have:
\sqrt{45^2}\gt \sqrt{1996}
45+1\gt \sqrt{1996}+1\ge k^2+2k
46\gt k^2+2k
k^2+2k-46 \lt 0
Solving it for k, we have -7\le k \le 5 which implies 0\le k \le 5.
Checking it for each case, there is only a solution to the problem, and that is when
k=1, which leads to \displaystyle n=500.
No comments:
Post a Comment