Loading [MathJax]/extensions/TeX/color.js

Monday, August 3, 2015

Optimization Contest Problem: Prove x4+x3x2x+1>0 for all real x.

In one of my previous blog posts(optimization-contest-problem), we want to prove that \displaystyle \color{yellow}\bbox[5px,blue]{x^4+x^3-x^2-x+1} is always greater than zero for all real x, or more specifically, for x\gt 1.

Math educator should ask open questions that permit a greater variety of responses. This problem that is to prove  x^4+x^3-x^2-x+1\gt 0 offers us the best chance to achieve our goal to transform students in terms of their ability to think critically and rationally.

We can actually easily prove that x^4+x^3-x^2-x+1\gt 0 for all real x if we employ one of the powerful heuristic strategy, by breaking the problem into cases, solve each case, divide and conquer!

Note that we can rewrite \displaystyle \color{yellow}\bbox[5px,purple]{x^4+x^3-x^2-x+1}  in such a way that we can easily show it is always greater than 0 for \displaystyle \color{yellow}\bbox[5px,purple]{x\ge -1}.

\displaystyle \color{yellow}\bbox[5px,purple]{\begin{align*}x^4+x^3-x^2-x+1&=x^4+(x^3-x)-(x^2-1)\\&=x^4+x(x^2-1)-(x^2-1)\\&=x^4+(x-1)(x^2-1)\\&=x^4+(x-1)(x-1)(x+1)\\&=x^4+(x-1)^2(x+1)\end{align*}}

It is obvious that for \displaystyle \color{yellow}\bbox[5px,purple]{x\gt -1}, both x^4\ge 0 and (x-1)^2(x+1)\gt 0.

So we can conclude that \displaystyle \color{yellow}\bbox[5px,purple]{x^4+x^3-x^2-x+1\gt 0}for \displaystyle \color{yellow}\bbox[5px,purple]{x\ge -1}.

Now, for the second part where we have to prove \displaystyle \color{yellow}\bbox[5px,green]{x^4+x^3-x^2-x+1\gt 0} for \displaystyle \color{yellow}\bbox[5px,green]{x\lt -1}.

\displaystyle \color{yellow}\bbox[5px,green]{\begin{align*}x^4+x^3-x^2-x+1&=(x^4+x^3-x^2-x)+1\\&=x(x^3+x^2-x-1)+1\\&=x(x-1)(x^2+2x+1)+1\\&=x(x-1)(x+1)^2+1\end{align*}}

It's obvious that for \displaystyle \color{yellow}\bbox[5px,green]{x\lt -1}, both x\lt 0 and (x-1)\lt 0 while (x+1)^2\gt 0.

Combining the signs, it must be true that x(x-1)(x+1)^2\gt 0 for \displaystyle \color{yellow}\bbox[5px,green]{x\lt -1}, which means \displaystyle \color{yellow}\bbox[5px,green]{x^4+x^3-x^2-x+1\gt 0}for \displaystyle \color{yellow}\bbox[5px,green]{x\lt -1}.

All in all, we can say it out loud that \displaystyle \color{yellow}\bbox[5px,blue]{x^4+x^3-x^2-x+1\gt 0} for all real x.

No comments:

Post a Comment