Processing math: 100%

Thursday, August 20, 2015

(Heuristic Solution) Prove 3555+5577+7735+3577+5535+7755>2310.

Prove 3555+5577+7735+3577+5535+7755>2310.

My solution:

Note that we could rewrite the given LHS of the inequality as follows:

3555+5577+7735+3577+5535+7755

=5(7)5(11)+5(11)7(11)+7(11)5(7)+5(7)7(11)+5(11)5(7)+7(11)5(11)

Now, we could further algebraically manipulating the expression by dividing (at the same time multiplying) them by 5(7)(11):

3555+5577+7735+3577+5535+7755

=5(7)5(11)+5(11)7(11)+7(11)5(7)+5(7)7(11)+5(11)5(7)+7(11)5(11)

=(5)(7)(11)(5(7)5(11)5(7)(11)+5(11)7(11)5(7)(11)+7(11)5(7)5(7)(11)+5(7)7(11)5(7)(11)+5(11)5(7)5(7)(11)+7(11)5(11)5(7)(11))

=(5)(7)(11)(511+117+75+711+57+115)

=(5)(7)(11)((511+115)+(117+711)+(75+57))

Note that from the AM-GM inequality, we have:

511+115=511+1511>2

Similarly,

117+711=117+1117>2 and 75+57=75+175>2

Therefore, we obtain:

3555+5577+7735+3577+5535+7755

=(5)(7)(11)((511+115)+(117+711)+(75+57))

>(5)(7)(11)(2+2+2)

>2310

And we're hence done.


No comments:

Post a Comment