Prove 35√55+55√77+77√35+35√77+55√35+77√55>2310.
My solution:
Note that we could rewrite the given LHS of the inequality as follows:
35√55+55√77+77√35+35√77+55√35+77√55
=5(7)√5(11)+5(11)√7(11)+7(11)√5(7)+5(7)√7(11)+5(11)√5(7)+7(11)√5(11)
Now, we could further algebraically manipulating the expression by dividing (at the same time multiplying) them by 5(7)(11):
35√55+55√77+77√35+35√77+55√35+77√55
=5(7)√5(11)+5(11)√7(11)+7(11)√5(7)+5(7)√7(11)+5(11)√5(7)+7(11)√5(11)
=(5)(7)(11)(5(7)√5(11)5(7)(11)+5(11)√7(11)5(7)(11)+7(11)√5(7)5(7)(11)+5(7)√7(11)5(7)(11)+5(11)√5(7)5(7)(11)+7(11)√5(11)5(7)(11))
=(5)(7)(11)(√5√11+√11√7+√7√5+√7√11+√5√7+√11√5)
=(5)(7)(11)((√5√11+√11√5)+(√11√7+√7√11)+(√7√5+√5√7))
Note that from the AM-GM inequality, we have:
√5√11+√11√5=√5√11+1√5√11>2
Similarly,
√11√7+√7√11=√11√7+1√11√7>2 and √7√5+√5√7=√7√5+1√7√5>2
Therefore, we obtain:
35√55+55√77+77√35+35√77+55√35+77√55
=(5)(7)(11)((√5√11+√11√5)+(√11√7+√7√11)+(√7√5+√5√7))
>(5)(7)(11)(2+2+2)
>2310
And we're hence done.
No comments:
Post a Comment