Calculate \displaystyle \lim_{x \to \infty} (\sin \sqrt{x+1}-\sin \sqrt{x}).
Let:
\displaystyle L=\lim_{x\to\infty}\left(\sin\left(\sqrt{x+1} \right)-\sin\left(\sqrt{x} \right) \right)
Application of the sum-to-product identity:
\displaystyle \sin(\alpha)-\sin(\beta)=2\sin\left(\frac{\alpha-\beta}{2} \right)\cos\left(\frac{\alpha+\beta}{2} \right)
And the limit property:
\displaystyle \lim_{x\to c}\left(k\cdot f(x) \right)=k\cdot\lim_{x\to c}\left(f(x) \right)
Allows us to write:
\displaystyle L=2\lim_{x\to\infty}\left(\sin\left(\frac{\sqrt{x+1}-\sqrt{x}}{2} \right)\cos\left(\frac{\sqrt{x+1}+\sqrt{x}}{2} \right) \right)
Rationalization of the numerator of the sine function gives us:
\displaystyle L=2\lim_{x\to\infty} \left( \sin \left(\frac{1}{2 \left( \sqrt{x+1}+ \sqrt{x} \right)} \right) \cos \left(\frac{ \sqrt{x+1}+ \sqrt{x}}{2} \right) \right)
Now, using the property of limits:
\displaystyle \lim_{x\to c}\left(f(x)\cdot g(x) \right)=\left(\lim_{x\to c}\left(f(x) \right) \right)\left(\lim_{x\to c}\left(g(x) \right) \right)
We obtain:
\displaystyle L=2 \lim_{x \to\infty} \left( \sin \left( \frac{1}{2 \left( \sqrt{x+1}+ \sqrt{x} \right)} \right) \right) \lim_{x \to\infty} \left( \cos \left( \frac{ \sqrt{x+1}+ \sqrt{x}}{2} \right) \right)
The first limit goes to zero, and the second limit is bounded, hence:
\displaystyle L=0
No comments:
Post a Comment