Show that :
(sinx+acosx)(sinx+bcosx)≤1+(a+b2)2
Let:
A=tan−1(a)
B=tan−1(b)
Using a linear combination, we may write the inequality as:
√(1+a2)(1+b2)sin(x+A)sin(x+B)≤1+(a+b2)2
Let:
f(x)=sin(x+A)sin(x+B)
Thus, differentiating with respect to x, we obtain::
f′(x)=sin(2x+A+B)
f″
Then f(x) has its maxima for:
\displaystyle x=\frac{(2k+1)\pi-(A+B)}{2} where \displaystyle k\in\mathbb Z
We then find:
\displaystyle f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)=\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+A \right)\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+B \right)=
\displaystyle \sin\left(\frac{(2k+1)\pi+A-B}{2} \right)\sin\left(\frac{(2k+1)\pi-A+B}{2} \right)=
\displaystyle \frac{\cos(A-B)-\cos((2k+1)\pi)}{2}=\frac{\cos(A-B)+1}{2}=
\displaystyle \frac{\cos(A)\cos(B)+\sin(A)\sin(B)+1}{2}=
\displaystyle \frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2\sqrt{(1+a^2)(1+b^2)}}
Now, we need only show:
\displaystyle \sqrt{(1+a^2)(1+b^2)}f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)\le1+\left(\frac{a+b}{2} \right)^2
\displaystyle \frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2}\le1+\left(\frac{a+b}{2} \right)^2
\displaystyle 2+2ab+2\sqrt{(1+a^2)(1+b^2)}\le4+a^2+2ab+b^2
\displaystyle 2\sqrt{(1+a^2)(1+b^2)}\le2+a^2+b^2
\displaystyle 4a^2b^2+4a^2+4b^2+4\le a^4+2a^2b^2+4a^2+b^4+4b^2+4
\displaystyle 2a^2b^2\le a^4+b^4
\displaystyle 0\le(a^2-b^2)^2
QED
No comments:
Post a Comment