Method 2:
Method 1 has showed us the given LHS of the equation (after it's multiplied both sides by the quantity $22!$) is equivalent to
[MATH] {22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}=\dfrac{2^x22!}{y!}[/MATH]
This second method doesn't require us to use calculator to look for both $x$ and $y$. All it needs is the binomial theorem, that would be all.
The formal expression of the Binomial Theorem is as follows:
[MATH](a+b)^n = \sum_{k=0}^n{n \choose k}a^{n-k}b^k[/MATH]
What is so significant about this binomial theorem is on what figures we replace $a$ and $by$ with.
If we let $a=b=1$, we have:
[MATH]\begin{align*}(1+1)^n& = \sum_{k=0}^n{n \choose k}1^{n-k}1^k\\&= \sum_{k=0}^n{n \choose k}\\&={n \choose 0}+{n \choose 1}+{n \choose 2}+{n \choose 3}\cdots+{n \choose n-1}+{n \choose n}\end{align*}[/MATH]
On the other hand, if we let $a=1$ and $b=-1$, we obtain:
[MATH]\begin{align*}(1-1)^n& = \sum_{k=0}^n{n \choose k}1^{n-k}(-1)^k\\&= \sum_{k=0}^n(-1)^k{n \choose k}\\&={n \choose 0}-{n \choose 1}+{n \choose 2}-{n \choose 3}\cdots-+{n \choose n-1}+{n \choose n}
\color{red}\text{*(if $n$ is even)}\end{align*}[/MATH]
In our case, we have $n=22$.
Therefore we get:
[MATH](1+1)^{22}=2^{22}={22 \choose 0}+{22 \choose 1}+{n \choose 2}+{n \choose 3}+\cdots+{22 \choose 21}+{22 \choose 22}[/MATH]
[MATH](1-1)^{22}=0={22 \choose 0}-{22 \choose 1}+{22 \choose 2}-{22 \choose 3}\cdots-+{22 \choose 21}+{22 \choose 22}[/MATH]
Equation below subtracted from the above gives:
[MATH]2^{22}=2\left({22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}\right)[/MATH]
[MATH]2^{21}={22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}[/MATH]
Therefore we have:
$2^{21}=\dfrac{2^x22!}{y!}$
$2^{21}y!=2^x22!$
Hence $x=21$ and $y=22$ are the solutions.
No comments:
Post a Comment