Method 2:
Method 1 has showed us the given LHS of the equation (after it's multiplied both sides by the quantity 22!) is equivalent to
\displaystyle {22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}=\dfrac{2^x22!}{y!}
This second method doesn't require us to use calculator to look for both x and y. All it needs is the binomial theorem, that would be all.
The formal expression of the Binomial Theorem is as follows:
\displaystyle (a+b)^n = \sum_{k=0}^n{n \choose k}a^{n-k}b^k
What is so significant about this binomial theorem is on what figures we replace a and by with.
If we let a=b=1, we have:
\displaystyle \begin{align*}(1+1)^n& = \sum_{k=0}^n{n \choose k}1^{n-k}1^k\\&= \sum_{k=0}^n{n \choose k}\\&={n \choose 0}+{n \choose 1}+{n \choose 2}+{n \choose 3}\cdots+{n \choose n-1}+{n \choose n}\end{align*}
On the other hand, if we let a=1 and b=-1, we obtain:
\displaystyle \begin{align*}(1-1)^n& = \sum_{k=0}^n{n \choose k}1^{n-k}(-1)^k\\&= \sum_{k=0}^n(-1)^k{n \choose k}\\&={n \choose 0}-{n \choose 1}+{n \choose 2}-{n \choose 3}\cdots-+{n \choose n-1}+{n \choose n} \color{red}\text{*(if $n$ is even)}\end{align*}
In our case, we have n=22.
Therefore we get:
\displaystyle (1+1)^{22}=2^{22}={22 \choose 0}+{22 \choose 1}+{n \choose 2}+{n \choose 3}+\cdots+{22 \choose 21}+{22 \choose 22}
\displaystyle (1-1)^{22}=0={22 \choose 0}-{22 \choose 1}+{22 \choose 2}-{22 \choose 3}\cdots-+{22 \choose 21}+{22 \choose 22}
Equation below subtracted from the above gives:
\displaystyle 2^{22}=2\left({22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}\right)
\displaystyle 2^{21}={22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}
Therefore we have:
2^{21}=\dfrac{2^x22!}{y!}
2^{21}y!=2^x22!
Hence x=21 and y=22 are the solutions.
No comments:
Post a Comment