Loading [MathJax]/extensions/TeX/mathchoice.js

Sunday, May 24, 2015

Method 2: Find x and y if 11!21!+13!19!+15!17!++121!1!=2xy!

If x,y are positive integers such that 11!21!+13!19!+15!17!+17!15!+19!13!+111!11!+113!9!+115!7!+117!5!+119!3!+121!1!=2xy!. Find x,y.

Method 2:

Method 1 has showed us the given LHS of the equation (after it's multiplied both sides by the quantity 22!) is equivalent to

\displaystyle {22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}=\dfrac{2^x22!}{y!}

This second method doesn't require us to use calculator to look for both x and y. All it needs is the binomial theorem, that would be all.

The formal expression of the Binomial Theorem is as follows:

\displaystyle (a+b)^n = \sum_{k=0}^n{n \choose k}a^{n-k}b^k

What is so significant about this binomial theorem is on what figures we replace a and by with.

If we let a=b=1, we have:

\displaystyle \begin{align*}(1+1)^n& = \sum_{k=0}^n{n \choose k}1^{n-k}1^k\\&= \sum_{k=0}^n{n \choose k}\\&={n \choose 0}+{n \choose 1}+{n \choose 2}+{n \choose 3}\cdots+{n \choose n-1}+{n \choose n}\end{align*}

On the other hand, if we let a=1 and b=-1, we obtain:

\displaystyle \begin{align*}(1-1)^n& = \sum_{k=0}^n{n \choose k}1^{n-k}(-1)^k\\&= \sum_{k=0}^n(-1)^k{n \choose k}\\&={n \choose 0}-{n \choose 1}+{n \choose 2}-{n \choose 3}\cdots-+{n \choose n-1}+{n \choose n} \color{red}\text{*(if $n$ is even)}\end{align*}

In our case, we have n=22.

Therefore we get:

\displaystyle (1+1)^{22}=2^{22}={22 \choose 0}+{22 \choose 1}+{n \choose 2}+{n \choose 3}+\cdots+{22 \choose 21}+{22 \choose 22}

\displaystyle (1-1)^{22}=0={22 \choose 0}-{22 \choose 1}+{22 \choose 2}-{22 \choose 3}\cdots-+{22 \choose 21}+{22 \choose 22}

Equation below subtracted from the above gives:

\displaystyle 2^{22}=2\left({22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}\right)

\displaystyle 2^{21}={22 \choose 1}+{22 \choose 3}+{22 \choose 5}+{22 \choose 7}+{22 \choose 9}+{22 \choose 11}+{22 \choose 13}+{22 \choose 15}+{22 \choose 17}+{22 \choose 19}+{22 \choose 21}

Therefore we have:

2^{21}=\dfrac{2^x22!}{y!}

2^{21}y!=2^x22!

Hence x=21 and y=22 are the solutions.

No comments:

Post a Comment