Express cos1∘+cos2∘+⋯+cos44∘sin1∘+sin2∘+⋯+sin44∘ in the form a+b√c, where a,b,c are positive integers.
(This question showed up here(math-teacher-guide) but I did not include its solution in that slide show).
My solution:
Normally for simplifying trigonometric question such as this one, there is one thing that's so worth noticing:
1. The terms could be paired up so the sum of them always yields to the same number.
In this case, we can rewrite the given expression so both numerator and denominator carry more terms for better visualization effect:
cos1∘+cos2∘+⋯+cos44∘sin1∘+sin2∘+⋯+sin44∘
=cos1∘+cos2∘+cos3∘+⋯+cos42∘++cos43∘+cos44∘sin1∘+sin2∘++sin3∘⋯+sin42∘+sin43∘+sin44∘
=(cos1∘+cos44∘)+(cos2∘+cos43∘)+(cos3∘+cos42∘)⋯+(cos22∘+cos23∘)(sin1∘+sin44∘)+(sin2∘+sin43∘)+(sin3∘+sin42∘)⋯+(sin22∘+sin23∘)
Ahem, we're not done yet, we need the sum-to-product formula to simplify the expression after grouping further:
Sum-to-product formulas tell us:
1. cosA+cosB=2cosA+B2cosA−B2
1. sinA+sinB=2sinA+B2cosA−B2
Therefore, we get:
cos1∘+cos2∘+⋯+cos44∘sin1∘+sin2∘+⋯+sin44∘
=cos1∘+cos2∘+cos3∘+⋯+cos42∘++cos43∘+cos44∘sin1∘+sin2∘++sin3∘⋯+sin42∘+sin43∘+sin44∘
=(cos1∘+cos44∘)+(cos2∘+cos43∘)+(cos3∘+cos42∘)+⋯+(cos22∘+cos23∘)(sin1∘+sin44∘)+(sin2∘+sin43∘)+(sin3∘+sin42∘)⋯+(sin22∘+sin23∘)
=2cos45∘2cos43∘2+2cos45∘2cos41∘2+2cos45∘2cos39∘2+⋯+2cos45∘2cos122sin45∘2cos43∘2+2sin45∘2cos41∘2+2sin45∘2cos39∘2+⋯+2sin45∘2cos1∘2
=2cos45∘2(cos43∘2+cos41∘2+cos39∘2+⋯+cos1∘2)2sin45∘2(cos43∘2+cos41∘2+cos39∘2+⋯+cos1∘2)
=2cos45∘2(cos43∘2+cos41∘2+cos39∘2+⋯+cos1∘2)2sin45∘2(cos43∘2+cos41∘2+cos39∘2+⋯+cos1∘2)
=1tan45∘2
Since we know tan45∘=1 and tan2x=2tanx1−tan2x, we get the value for tan452 as follows:
tan2(45∘2)=2tan45∘21−tan245∘2
tan2(45∘2)=2tan45∘21−tan245∘2
tan45∘=2tan45∘21−tan245∘2
1(1−tan245∘2)=2tan45∘2
tan245∘2+2tan45∘2−1=0
Solve for tan45∘2 we get:
tan45∘2=−2±√22−4(1)(−1)2=−1±√2=−1+√2(>0)
Therefore we obtain:
cos1∘+cos2∘+⋯+cos44∘sin1∘+sin2∘+⋯+sin44∘=1tan45∘2=1−1+√2=−1−√2(−1+√2)(−1−√2)=1+√2
No comments:
Post a Comment