Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Monday, May 4, 2015

Solving Hard System

Solve the system

1x+1y+z=12

1y+1x+z=13

1z+1x+y=14

Method I (Long and tedious but workable solution):

If we let x+y+z=m, we have

1x+1mx=12

mx(mx)=12

2m=mxx2

x2=m(x2)

m=x2x2(1)

and similarly,

m=y2y3(2)

m=z2z4(3)

To relate x and y, we equate (1) and (2):

x2x2=y2y3

y=x2±xx212(x2)2(x2)

To relate x and z, we equate (1) and (3):

x2x2=z2z4

z=x2±xx216(x2)2(x2)

Next, we add these all up so that we can make another equation based on the fact x+y+z=m=x2x2:

x+x2±xx212(x2)2(x2)+x2±xx216(x2)2(x2)=x2x2

Clearing fractions by multiplying both sides by the quantity 2(x2) we get:

x(2(x2))+x2±xx212(x2)+x2±xx216(x2)=x2(2)

2x24x+2x2±xx212(x2)±xx216(x2)=2x2

2x24x+±xx212(x2)±xx216(x2)=0

x(2x4+±x212(x2)±x216(x2))=0

Divide through by x since x0 yields

2x4+±x212(x2)±x216(x2)=0

2(x2)+±x212(x2)±x216(x2)=0

Now, we let x2=k, we get

2k+±(k+2)212k±(k+2)216k)=0

2k+±(k+2)212k=(k+2)216k)

Square both sides gives:

4k2±4k(k+2)212k+(k+2)212k=(k+2)216k

4k2+4k=4k(k+2)212k

4k(k+1)=4k(k+2)212k

k+1=(k+2)212k

Square both sides again to get:

(k+1)2=(k+2)212k

k2+2k+1=k2+4k+412k

10k=3

k=310

Hence,

x2=k=310

x=2310

y=x2±xx212(x2)2(x2)=236 or 695

z=x2±xx216(x2)2(x2)=232 or 9215

Now, we need to check their validity by substituting them back into the original given equation, we see that only the set of

x=2310,y=236,z=232 is true.

No comments:

Post a Comment