Processing math: 100%

Thursday, August 6, 2015

IMO Integration Problem: Evaluate π40x(sinx+cosx)cosx dx.

Evaluate π40x(sinx+cosx)cosx dx.

Solving for this problem is a breeze if you're someone who is so sensitive about the possibility of the existence of property of symmetry for the integrand function involved.

And note that this is a solution provided by an Indian friend of mine.

First, note that we could simplify the sum sinx+cosx as:

sinx+cosx=cosx+sinx=12+12cos(x+arctan1)=2cos(x+π4)

Therefore, we're dealing with the following definite integral:

π40x(sinx+cosx)cosx dx=π40x2cos(x+π4)cosx dx.

Now, if we let

I=π/40x(sinx+cosx)cosxdx=π/40x2cos(π4x)cosxdx(1)

And note that if we define f(x)=x2cos(x+π4)cosx and we then replace x by π4x into f(x), we see that we have:

f(x+π4)=(x+π4)2cos(π4(x+π4))cos(x+π4)=(x+π4)2cos(x)cos(x+π4)=(x+π4)2cos(x)cos(x+π4)

which means f(x) is symmetric with respect to the vertical line x=π4 since f(x+π4)=(x+π4)2cos(x)cos(x+π4), is even.

Therefore, we also have

I=π/40π4x2cos(π4x)cosxdx(2)

Add (1) and (2) we get:

I+I=π/40x2cos(π4x)cosxdx+π/40π4x2cos(π4x)cosx

2I=π/40x+π4x2cos(π4x)cosxdx

2I=π/40x+π4x2cos(π4x)cosxdx

2I=π42π/401cos(π4x)cosxdx

Now comes the magic trick!

We could do the algebraic manipulation to make the finding of the anti-derivative easier:

2I=π422222π/40dxcos(π4x)cosx

2I=π4π/4022dxcos(π4x)cosx

2I=π4π/40sin(π4x+x)dxcos(π4x)cosx

I=π8π/40sin(π4x)cosx+cos(π4x)sinxcos(π4x)cosxdx

I=π8π/40(sin(π4x)cosxdxcos(π4x)cosx+cos(π4x)sinxcos(π4x)cosx)dx

I=π8π/40(tan(π4x)+tanx),dx

But notice again π/40tan(π4x),dx=π/40tanx,dx



Hence,

I=π8π/40(2tanx)dx=π4π/40tanxdx=π4(ln(secx)|π/40=π4(ln(secπ4)0)=π4ln2=12π4ln2=π8ln2


3 comments:

  1. Hi, the identity must be √cos(x-π4)=cos(x)+sin(x) with a negative sign in the cos.

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete
  3. multiply cosx in to the bracket then convert x in to 2x use king rule then take tan(x)=t

    ReplyDelete