Evaluate ∫π40x(sinx+cosx)cosx dx.
Solving for this problem is a breeze if you're someone who is so sensitive about the possibility of the existence of property of symmetry for the integrand function involved.
And note that this is a solution provided by an Indian friend of mine.
First, note that we could simplify the sum sinx+cosx as:
sinx+cosx=cosx+sinx=√12+12cos(x+arctan1)=√2cos(x+π4)
Therefore, we're dealing with the following definite integral:
∫π40x(sinx+cosx)cosx dx=∫π40x√2cos(x+π4)cosx dx.
Now, if we let
I=∫π/40x(sinx+cosx)cosxdx=∫π/40x√2cos(π4−x)cosxdx(1)
And note that if we define f(x)=x√2cos(x+π4)cosx and we then replace x by π4−x into f(x), we see that we have:
f(x+π4)=(x+π4)√2cos(π4−(x+π4))cos(x+π4)=(x+π4)√2cos(−x)cos(x+π4)=(x+π4)√2cos(x)cos(x+π4)
which means f(x) is symmetric with respect to the vertical line x=π4 since f(x+π4)=(x+π4)√2cos(x)cos(x+π4), is even.
Therefore, we also have
I=∫π/40π4−x√2cos(π4−x)cosxdx(2)
Add (1) and (2) we get:
I+I=∫π/40x√2cos(π4−x)cosxdx+∫π/40π4−x√2cos(π4−x)cosx
2I=∫π/40x+π4−x√2cos(π4−x)cosxdx
2I=∫π/40x+π4−x√2cos(π4−x)cosxdx
2I=π4√2∫π/401cos(π4−x)cosxdx
Now comes the magic trick!
We could do the algebraic manipulation to make the finding of the anti-derivative easier:
2I=π4√2⋅2√2⋅√22∫π/40dxcos(π4−x)cosx
2I=π4∫π/40√22dxcos(π4−x)cosx
2I=π4∫π/40sin(π4−x+x)dxcos(π4−x)cosx
I=π8∫π/40sin(π4−x)cosx+cos(π4−x)sinxcos(π4−x)cosxdx
I=π8∫π/40(sin(π4−x)cosxdxcos(π4−x)cosx+cos(π4−x)sinxcos(π4−x)cosx)dx
I=π8∫π/40(tan(π4−x)+tanx),dx
But notice again ∫π/40tan(π4−x),dx=∫π/40tanx,dx
Hence,
I=π8∫π/40(2tanx)dx=π4∫π/40tanxdx=π4(ln(secx)|π/40=π4(ln(secπ4)−0)=π4ln√2=12π4ln2=π8ln2
Hi, the identity must be √cos(x-π4)=cos(x)+sin(x) with a negative sign in the cos.
ReplyDeleteThis comment has been removed by the author.
ReplyDeletemultiply cosx in to the bracket then convert x in to 2x use king rule then take tan(x)=t
ReplyDelete